Skip to main content
An official website of the European UnionAn official EU website
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

SMART SENSORS AND SELF-HEALING FUNCTIONALITIES EMBEDDED FOR BATTERY LONGEVITY WITH MANUFACTURABILITY AND ECONOMICAL RECYCLABILITY

Project description

A future of longer-lasting, eco-friendly batteries

With the increasing reliance on Li-ion batteries (LIBs) to power our devices and facilitate the transition to renewable energy sources, the pressing problem of their limited lifespan and environmental impact looms large. LIBs degrade over time, and their production generates significant carbon emissions. In this context, the EU-funded SALAMANDER project offers a groundbreaking solution to these challenges. Specifically, it aims to embed advanced sensors and self-healing capabilities within LIBs, creating smart batteries that can autonomously detect and repair damage. This innovative approach not only promises longer-lasting, more reliable batteries but also aligns with the goal of a sustainable European battery value chain and a greener future.

Objective

The core concept of the SALAMANDER project is to develop and integrate embedded sensors and self-healing functionality in Li-ion batteries (LIB) to enhance their quality, reliability, and lifetime. This is achieved by demonstrating “smart” aspects in the battery which analyze indicators of its own degradation and independently respond with external stimuli to trigger on-demand self-healing. To achieve this goal, the project proposes 3 types of sensors with 2 types of self-healing mechanisms to counteract the most threatening and damaging reactions that occur in a typical LIB. On the anode, a resistance sensor array will be printed onto its surface to sense the degree of electrode fracture in the silicon/carbon composite anode. The anode will be embedded with a self-healing polymer network which upon thermal activation helps re-bind the silicon nanoparticles. For the cathode, an electrochemical sensor array is printed onto the separator to sense the dissolution of Mn from the LiNiMnCoO2 (NMC) cathode. To prevent Mn ions from critically degrading the cell, the cathode will be embedded with heat-activated scavenging species which remove these ions. Lastly, an internal temperature sensor helps control the degree of thermal activation. In each degradation scenario, the sensors communicate with the battery management system (BMS), which uses a physics-based model to trigger controlled heating to activate self-healing. Additionally, a life cycle assessment will be conducted to validate the recyclability of the SALAMANDER battery and quantify how the environmental impact of manufacturing is offset by longer-lasting batteries. Thus, although the project’s technology is anticipated to be disruptive at the cell and BMS levels, its design would remain compatible with existing manufacturing and recycling processes. These outcomes thereby help meet the goal of BATTERY 2030+ for a competitive, sustainable European battery value chain and a more circular economy.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

INSTITUTT FOR ENERGITEKNIKK
Net EU contribution
€ 1 391 875,00
Total cost
€ 1 391 875,00

Participants (10)

Partners (1)