Project description
Bio-photoanode for bio-photovoltaic development
Growing energy demands necessitate alternative renewable energy technologies. One approach is the development of bio-photovoltaics, which use efficient photosynthetic proteins as photoactive components. Supported by the Marie Skłodowska-Curie Actions programme, the SpinBioAnode project aims to develop energy-efficient, semiconductor-free bio-photoanodes. It will use an electron-conductive immobilisation matrix to design, assemble, and optimise a biohybrid photoanode that integrates a photosynthetic reaction centre with electrode materials. This approach harnesses a highly energetic triplet state generated by a spontaneous electron spin flip in purple bacteria. While biologically unfavourable, this spin flip offers the possibility of achieving open circuit potentials and solar energy conversion efficiencies exceeding 1 %, a benchmark not yet attained with current bio-photovoltaic technologies.
Objective
Current challenges of humankind in coping with raising energy needs make it necessary to look for alternative technologies for harvesting renewable energy. One of the strategies is to construct biophotovoltaics that directly exploits naturally abundant and highly efficient photosynthetic proteins as photoactive components. My goal within SpinBioAnode is to construct the first generation of energy-efficient semiconductor-free biophotoanodes. To do so, I will design, assemble, characterize, and optimize a biohybrid photoanode consisting of a photosynthetic reaction center interfaced with electrode materials via an electron-conductive immobilization matrix. SpinBioAnode comprises a unique approach for solar energy conversion that hijacks a highly energetic triplet state formed by a spontaneous electron spin flip in purple bacteria photosynthetic reaction centers. This spin flip is biologically unfavorable, but potentially lucrative for biohybrid applications that require large open circuit potentials and high solar energy conversion efficiencies above 1% which to date, have not been achieved using state-of-the-art biophotovoltaics. I will apply a strongly interdisciplinary approach for characterization of the photoanode prototype using a combination of spectroscopic, electroanalytical and modelling methods. This will be achieved by collaboration within a network of physicists, chemists, and biologists. The characterization results will be utilized in the feedback loop workflow to optimize the constructed biophotoanode. Utilization of biologically unfavorable pathways within protein, opened by means of biohybrid approaches, is still an unexplored area in biophotoelectrodes design and the outcome of the SpinBioAnode project will serve as a blueprint in the wider field of light energy conversion in a road towards reaching Sustainable Development Goals such as affordable and clean energy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences biochemistry biomolecules proteins
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80333 Muenchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.