Objective
How animal multicellularity evolved from unicellular ancestors remains an open evolutionary question. One key pre-requisite for the evolution of animal multicellularity was the evolution of cell adhesion. However, little is known about how cell adhesion evolved in the animal stem. In the last decades, considerable advances to reconstruct early animal evolution have come from investigations of the closest living unicellular relatives of animals, notably the choanoflagellates. These microeukaryotes have become powerful models to address the evolution of animals, for several reasons: (1) they are the sister group to all animals; (2) their genomes encode homologs of genes that can inform about animal origins, including an animal-like “cell-adhesion toolkit”; (3) they can temporarily adhere to each other and form multicellular colonies; and (4) they are amenable to functional genetics. Therefore, studies on choanoflagellate molecular and cell biology can inform the mechanisms of the emergence of multicellularity in animals. Here, I will investigate the cell adhesion mechanisms governing multicellularity in the recently discovered choanoflagellate Choanoeca flexa. C. flexa has direct cell-cell adhesion and aggregative multicellularity (unique in choanoflagellates) and also undergoes light-controlled collective contractility of colonies (unique in unicellular relatives of animals), making it a powerful model to study the emergence of collective behaviors. I will perform a systematic characterization of the environmental and endogenous factors regulating cell adhesion during colony formation in C. flexa using a combination of genetic engineering, biochemistry, proteomics, molecular and cell biology approaches, and functional genomics. The data generated here will contribute to converting C. flexa into an experimentally tractable species and has the potential to shed light on the pre-metazoan function of cell adhesion genes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins proteomics
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75724 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.