Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Evaluation of thermohydraulic characteristic of printed circuit heat exchangers in pseudocritical region for supercritical CO2 cycle

Project description

Paving the way for greener power cycles

The power sector accounts for approximately 28.2 % of the total greenhouse gas emissions in the EU-27 and the United Kingdom. This has heightened the importance and necessity of researching renewable solutions for the power and energy sectors, leading to the development of the novel supercritical carbon dioxide Brayton cycle (sCO2-BC) as a promising, greener alternative to modern power cycles. However, it faces challenges related to the need for better precoolers, which have pushed its requirements to unacceptable levels. The MSCA-funded Super-CO2 project aims to address this issue by exploring innovative channel geometries. The project seeks to develop and validate various techniques to enhance the existing precooling technology. Additionally, the project will contribute to the integration of sCO2-BC as part of its efforts.

Objective

Currently, 28.2% of the total EU-28 greenhouse gas emissions come from the power sector, a large contributor to greenhouse gas emissions. Consequently, the emphasis of the research in power generation has swung towards assessing highly efficient and greener power cycles. In this reference, the novel supercritical carbon dioxide Brayton cycle (sCO2-BC) is an ideal choice that outstrips other formally well-known power cycles (Brayton & Rankine cycles). In sCO2-BC, the role of the pre-cooler is critical. It serves as a sink to the power cycle and regulates the conditions at the compressor's inlet. The compressor's inlet temperature is intended to be maintained close to the critical temperature of carbon dioxide (CO2) to achieve greater cycle efficiencies. However, exceptionally higher values of the specific heat capacity of CO2 near its critical point (up to 40 times higher than water) require exceedingly high water flow rates on the cold side to achieve the desired exit temperatures of CO2. Consequently, the pre-cooler's pumping power requirements become high enough to deteriorate the cycle's performance. This problem can only be mitigated by exploring new channel geometries with enhanced thermohydraulic characteristics. Therefore, the proposed study plan to characterize the complex thermohydraulic characteristics in the pseudocritical region of CO2 using a multifaceted technique that includes, experimental, numerical, and machine learning techniques. The proposed work will provide a step forward to the success of sCO2-BC technologies that, in turn, will facilitate its integration with the green energy resources (generation-IV nuclear reactors and solar concentrated plants), helping to meet the EU's 2030 climate and energy framework goals of achieving at least 32% share for renewable energy.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

NORGES MILJO-OG BIOVITENSKAPLIGE UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 226 751,04
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0