Project description
Understanding brain-endocast relationships in in squamates
Many paleoneurological studies have inferred the cognitive and sensory abilities, evolution, and changes of extinct taxa. In cases where preserved brain tissue is absent from fossil records, vertebrate endocasts provide the only direct evidence of brain evolution. However, the validity of findings based on endocasts critically depends on the reliability of these endocasts as proxies for brain morphology, as variations in brain-endocast correspondences prevent generalisation. Supported by the Marie Skłodowska-Curie Actions programme, the NeuroSquam project will investigate the brain-endocast relationships within the Squamata clade. The project will use 3D imaging and geometric morphometrics across a wide variety of species to make detailed assessments of these relationships, aiming to provide a more accurate and specific understanding of the clade’s brain evolution.
Objective
In the absence of brain tissues preserved in the fossil record, vertebrate endocasts provide the only ‘direct’ evidence of brain evolution through deep time, and the possibility to infer cognitive and sensory abilities of extinct taxa. However, the validity of paleoneurological studies critically depends on the reliability of endocasts as a proxy for brain morphology. The variable brain-endocast correspondences found between and within modern vertebrate lineages prevent any generalizations to date. A detailed understanding of brain-endocast relationships in extant vertebrates is thus extremely important in order to avoid erroneous interpretations based on endocast morphology alone. NeuroSquam aims to study the brain-endocast relationships in the clade of Squamata, including lizards and snakes. Despite previous studies reporting a wide range of brain versus endocranial cavity proportions in lizards, our understanding of squamate brain-endocast relationships remains limited. By combining 3D imaging and 3D geometric morphometrics on a wide range of species, this research will provide a detailed and updated assessment of the brain-endocast relationships in Squamata. I will explore how these relationships vary between and within species in order to understand the different eco-biological factors that may impact the correspondence between brain and endocast. In addition, the comparison of morphometric data obtained from different 3D imaging techniques will provide new insights into the impact of fixation and staining on tissue shrinkage. By identifying reliable tissue-specific correction factors to adjust for shrinkage, this project will provide a starting point for future neuroanatomical studies seeking to use data from different imaging protocols. NeuroSquam’s originality and interdisciplinary nature will generate exceptional datasets and high-profile outputs and establish the applicant as an innovative leader in functional and comparative (paleo) neuroanatomy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been human-validated.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been human-validated.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75005 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.