Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Multi-scale research on nano-twinned thermal barrier coatings with high strength and toughness

Objective

Thermal barrier coatings (TBCs) have been widely used to protect the substrate of hot components against the hot and corrosive environment, which have extensive applications in power sectors, aerospace engineering and chemical industrials. They are, however, facing the paradox of conflicting competition between the strength and toughness, especially under high temperature. Aiming to develop high temperature TBCs with simultaneously improved strength and toughness, this project proposes an innovative strategy of engineering nano-twinned ceramics and examines their mechanical properties under high temperature with improved mechanistic understanding, which include: i) developing novel nano-twinned TYaO4 ceramic materials via hierarchical structures; ii) examining the mechanical properties of formed TBC materials via a unique high temperature nano-indentation system up to 2000 K; 3) establishing a multi-scale simulation framework to predict the macroscopic mechanical properties; and iv) developing a twin boundary affected hardening and crack growth model to reveal the influence of nanoscale structures. Four work programs are proposed ranging from experiments, simulations to theories to realize such an ambitious plan, intervened with a careful balanced training program, dissemination and management skill development. Properly implemented, the project shall reveal for the first time the effect of hierarchical nanoscale structures on the improved mechanical properties of TYaO4 ceramics up to 2000 K, which are much needed for the development of next generations of TBCs. The project exhibits strong interdisciplinary coupling among materials science and engineering, solid mechanics, and multiscale computation engineering. Not only bearing with significant scientific potentials, the mutual benefits from this program will booster the career of the researcher significantly and promote long term knowledge exchange and collaboration between Europe and China.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

TECHNISCHE UNIVERSITAET MUENCHEN
Net EU contribution
€ 189 687,36
Address
Arcisstrasse 21
80333 Muenchen
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data