Objective
Visualizing protein-ligand interactions at atomic details is key to understand how ligands regulate macromolecular function. This knowledge could be leveraged to develop pharmaceutics utilizing the structure-based drug discovery platform. However, determining experimental structures of such complexes is often difficult using theVisualizing protein-ligand interactions at atomic details is key to understand how ligands regulate macromolecular function. This knowledge could be leveraged to develop pharmaceutics utilizing the structure-based drug discovery (SBDD) platform. However, determining experimental structures of such complexes is often difficult using the traditional time-consuming approach of hunting for suitable crystals for X-ray analysis. Recent breakthroughs in single-particle cryo-EM have overcome this limitation and enabled us to obtain atomic resolution structures of complex biomolecular systems. Though cryo-EM can now provide very high-resolution data of the overall system (less than 2 angstroms in many cases), unfortunately, resolutions of ligands are often significantly low to be useful for SBDD. Parallel to developments in cryo-EM, computational methods for modeling and refining structures into EM maps have been developed, but their main focus has been to build accurate protein structures. Here, I propose to exploit the increased computing power of molecular dynamics simulations offered by high-performance computing and algorithm development to develop a cryo-EM data-driven computational modeling approach to fit ligands into low-resolution EM maps. After testing in a large data set, this approach will be applied to identify ligand binding sites in new EM maps of a membrane protein and investigate how binding regulates the functional landscape of proteins. The findings of this proposal could open new avenues in the drug design platform by leveraging the power of cryo-EM and computational chemistry to accurately model ligand-protein complex structures.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
100 44 Stockholm
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.