Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Challenging the state-of-the-art of low intensity noise, single frequency fiber lasers

Project description

Kilowatt-class low-noise single-frequency fibre lasers

Single-frequency (SF) lasers produce quasi-monochromatic light with low noise, which is essential for applications such as metrology and LIDAR. Current power limits are around 400 watts due to issues like stimulated Brillouin scattering (SBS) and transverse modal instability (TMI). With support from the Marie Skłodowska-Curie Actions programme, the KiLoS LASER project aims to develop kilowatt-class, low-noise SF fibre lasers by optimising laser design, using innovative ytterbium-doped fibres, and applying techniques to mitigate nonlinear and thermal effects. This will not only enhance performance but also deepen our understanding of the interactions between SBS and TMI, leading to improved system models for optimised parameters and thresholds.

Objective

The focus of this project is the development of state-of-the-art kW-class, low noise, single frequency (SF) fiber laser. SF lasers operate with a single longitudinal mode, emitting quasi-monochromatic light with kHz-class linewidth and low intensity noise. This class of lasers are in great demand for precision time/frequency metrology, atom cooling, coherent LIDAR, and laser spectroscopy. However, power scaling SF fiber lasers, while maintaining its low noise properties and high beam quality has been a challenge due to the onset of stimulated Brillouin scattering (SBS) and transverse modal instability (TMI) that disrupt the stable system operation beyond a certain power level (known as threshold). But high-power (> 500 W) low-intensity noise, SF lasers with high beam quality are quintessential for building next generation interferometric gravitational wave detectors (GWDs) and efficient neutral beam injector systems for fusion reactors. The current state-of-the-art for these systems is limited to ~ 400 W in an all-fiber architecture. We intend to challenge it by developing kW-class, low-noise SF fiber laser by using optimized laser design, novel ytterbium-doped fibers (commercial and customized) and efficient techniques to suppress the undesirable nonlinear and thermal effects. Such a system would also be valuable in understanding the dynamics and interplay between SBS and TMI and developing an accurate system model for optimized laser parameters and threshold levels. For this, we seek to combine the expertise of the applicant (Roopa Prakash), in building kW-class, narrow linewidth (~10 GHz), polarization-maintaining fiber lasers with the expertise of Giorgio Santarellis group in developing state-of-the-art low-intensity noise, SF lasers using specialty fibers. The interdisciplinary nature of this project will generate advances beyond the state-of-the-art not only in the fields involved in its development, but also in those where this laser can be applied.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 211 754,88
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0