Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Partition and accumulation of ENtropy in infinite-dimeNSIONs

Objective

The foundation of todays information-oriented society is based on Information Theory. Entropy is a fundamental concept in both classical and quantum information theory, measuring the uncertainty and the information content present in the state of a physical system. The Asymptotic Equipartition Property (AEP) asserts that the entropy of smaller parts accumulates to produce the total entropy of the entire system, under the assumption that the individual parts are identical and independent. A remarkable generalization of this property is the Entropy Accumulation Theorem (EAT) which states that entropy accumulation occurs more generally without an independence assumption, provided one quantifies the uncertainty about the individual systems by the von Neumann entropy of suitably chosen conditional states. These two results are central in the asymptotic analysis of entropy measures in finite-dimensional quantum systems with a wide range of applications in data compression, source coding, and Quantum Key Distribution.

Despite major advances in the study of entropy in quantum information theory, the fundamental limitations of extending the above concepts to infinite-dimensional systems are far from being understood. The main objective of this project is to develop novel mathematical tools to overcome these difficulties and extend these ideas in the framework of abstract von Neumann algebras. In particular, our essential goal will be to establish two main concepts- Asymptotic Equipartition and Entropy Accumulation in von Neumann algebras acting on infinite-dimensional Hilbert spaces. As a consequence, the generalized version of these two concepts will have direct applications in continuous variable Quantum Key Distribution and other cryptographic protocols, representing a small but important contribution to the European Commissions Quantum Technologies Flagship supporting pioneering research on quantum science.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE
Net EU contribution
€ 211 754,88
Address
DOMAINE DE VOLUCEAU ROCQUENCOURT
78153 Le Chesnay Cedex
France

See on map

Activity type
Research Organisations
Links
Total cost
No data