Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Quantum Jumps for Time Crystals

Objective

Discrete time crystals (DTC) in many-body systems are a prominent example of a many-body non-equilibrium state of matter. There have been many theoretical proposals on how to achieve a many-body DTC and they were realised in several experiments. An underlying framework for all different types of DTC models is lacking. My first main goal is to study the DTC phase in many-body systems with a novel framework, namely through their quantum jump behaviour induced by an environment. My second main goal is to go beyond the Lindblad description required for the first goal and consider also the case where Lindblad rates can go negative. Usual jump methods do not work in this case and I will rely on a novel jump method that I co-developed specifically for this situation. To deploy its full power, the method requires further development which will be the first objective of the project. I will study three systems with a DTC phase. The first is a toy model, a driven anharmonic oscillator, a good test case for the method which will provide new insight in the dynamical phase. Next, I study two true many-body systems. The first is a collection of spins where the DTC phase relies on many-body localisation (MBL), inspired on experimentally implemented protocols. My aim here is to distinguish the DTC phase from the ordinary MBL and ergodic phase by the jump statistics. Beyond this, I will explore how many sites must be monitored to detect and distinguish different phases. Finally, I will study a large ensemble of spins that can show the DTC phase, like the experiment in Nitrogen-Vacancy centres, which does not rely on MBL realise the DTC phase. It would be extremely elucidating to compare the nature of the phase to the one that does rely on MBL. I will compare the results from both cases in hopes unifying both realisations or finding clear distinctions.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

UNIVERSITAET ULM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 173 847,36
Address
HELMHOLTZSTRASSE 16
89081 Ulm
Germany

See on map

Region
Baden-Württemberg Tübingen Ulm, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0