Objective
Turbulent fluid motions are responsible for closing the energy budget in Earth’s atmosphere and on many astrophysical bodies, dictating their long-term evolution and climate. However, geophysical turbulence, even in the simplest contexts, remains an open problem. Past work has shown that the theory for homogeneous and isotropic turbulence (HIT) breaks down in a fluid subject to rotation, stratification, or large aspect ratios. Particularly affected is the central insight from the study of HIT, stating that energy moves to smaller scales through an ‘energy cascade’. In geophysical flows, energy can flow both to larger and smaller scales through a ‘bidirectional’ cascade. The fraction of energy going to large scales depends on the value of the relevant geophysical parameter, becoming nonzero at an apparent critical point. The goal of this project is to identify the spatial and spectral signatures of the bidirectional cascade, understand their role in the cascade’s sudden onset, and develop a quantitative theory for its subsequent development. We plan to use a combination of numerical and statistical methods to explore the bidirectional cascade in space, time, and scale. This analysis will be done through two complementary perspectives, investigating turbulent structures in physical space and in spectral space. In the former, the turbulent cascade manifests itself as individual structures which break up, merge, or clump together, depending on the regime. A statistical view of these interactions will provide insight on how the nature of the flow changes. On the other hand, in spectral space, the phases of the complex velocity amplitudes are known to be responsible for the exchange of energy among different length scales. We will look into a possible partial synchronization between these phases in our simulations, and attempt to model the transition to a bidirectional cascade using tools from the rich field of synchronization in complex networks.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28040 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.