Objective
MoMeNTUM aims at developing a next-generation computational code for Hyperbolic balance laws in
fluid flow and solid mechanics, based on versatile unstructured Voronoi grids (polygons and
polyhedra), and achieving efficiency that can be compared even with that of structured Cartesian
codes. The space-time-based methods will be of high-order Arbitrary-Lagrangian-Eulerian
Discontinuous Galerkin Finite Element type, with Finite Volume auxiliary subcell stabilisation. Such
a mixed formulation requires new grid generation techniques in order to be extended to moving
Voronoi meshes, due to the presence of degenerate and almost-degenerate elements with short or
zero-length edges. Using genuine Voronoi tessellations (i.e. nearest neighbour) is important in
order to preserve the smooth dynamic connectivity rearrangement naturally emerging from the motion
of Voronoi seeds in space, which is a key element for the construction of robust schemes on moving
polyhedral grids.
Efficiency will be achieved through new hybrid nodal/modal moving basis functions, defined on
cell-aligned bounding boxes, that can heavily exploit tensor-type data storage and access
patterns, usually available only in structured codes.
Additionally, the schemes will be equipped with an embedded mesh generator that can synergistically
interact with the computational core so that the behaviour of the on-the-fly subgrid generator for
the Finite Volume subcells will be optimised, like the Voronoi grid motion, according to the local
flow or stress patterns.
The project is a heavily multidisciplinary effort that requires the development and implementation
of new numerical solvers and new mesh generation algorithms within a single coherent software
architecture, which will be packaged in an open source, massively parallel, high performance Fortran
code, in the hope that it will constitute a step forward towards the wide adoption of advanced
high-order methods for solving real-world continuum mechanics problems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- natural sciences physical sciences classical mechanics solid mechanics
- natural sciences mathematics applied mathematics numerical analysis
- social sciences law
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
50931 KOLN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.