Objective
Two-dimensional (2D) nanomaterials such as graphene and transition metal dichalcogenides (TMDs), hold great promise for the engineering of modern nanophotonic devices that will operate at terahertz (THz) speed rates, with reduced energy requirements. Particularly, their nonlinear properties at THz frequencies, are expected to be the key element for the development of THz nanodevices that can generate new frequencies, control light propagation or act as nonlinear optical modulators. The TeraNanoLIGHT project aims to study with nanometer spatial and femtosecond temporal resolution, the ultrafast interaction of 2D nanomaterials with atomically strong (multi-MV/cm) THz fields, promoting the light-matter interactions into the non-perturbative regime. Intense THz transients will be combined with a scattering-type scanning near-field optical microscope (SNOM) to achieve atomically strong fields. Initially, THz surface plasmons (SPs) will be resonantly coupled in graphene, and their nonlinear behavior will be studied by monitoring their formation, propagation and temporal evolution as the THz field strength increases into the nonlinear regime. Furthermore, non-resonant nonlinearities will be explored, exploiting the oscillating THz field as an ultrafast AC bias. The possibility to observe high harmonic generation (HHG) with characteristics similar to those of atomic gases, will be studied in monolayer TMDs and heterostructures of different layers number and twist angles, excited by an out-of-plane polarized THz field. Finally, the opportunity of exploiting the extremely nonlinear interaction of light with matter, to improve the spatial resolution of SNOM, will be investigated. TeraNanoLIGHT project, envisions to facilitate our understanding about the ultrafast interaction of intense THz light with 2D materials and their high-order nonlinearities. This understanding is expected to trigger innovative research on the development of the future THz lightwave electronic devices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering amorphous solids amorphous semiconductors
- natural sciences physical sciences condensed matter physics quasiparticles
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences physical sciences optics microscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
93053 Regensburg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.