Objective
The use of large ensembles of two-level atoms (qubits) in cavity QED allows the exploration of collective states with long-range couplings mediated by the electromagnetic field of the cavity. Such systems are interesting quantum sensors and can be used to improve the performance of lasers and atomic clocks in addition to studying fundamental quantum mechanical behaviors. However, this approach limits the possibilities of exploration to collective qubit behavior, whilst much more rich physics can be explored if one allows for the use of multi-level atoms (qudits).
In this project I will use cold atoms coupled to optical cavities in order to generate entangled dark collective states in many-level atoms. Such dark collective states can be accessed via superradiant decay and may be used to enhance some quantum sensors. In addition they are of interest to quantum simulations to simulate topological systems and to quantum computation as temporary memories. I will demonstrate the experimental realization of theoretically proposed many-level dark states for quantum simulations and controlled coherence lifetimes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencesphysical sciencesopticslaser physics
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
1165 Kobenhavn
Denmark