Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Flow-Reactor Coupled 3D Printing: Achieving Voxel-Level Control of Out-of-Equilibrium Materials

Objective

Nature has optimized the properties of its building blocks by spatially varying hierarchical microstructures within complex form factors. Additive manufacturing techniques, in particular direct ink writing (DIW), are promising pathways towards replicating these systems synthetically, leading to printed materials with tarilored materials properties. However, current DIW techniques do not offer access to out-of-equilibrium materials, greatly limiting printable microstructures. To overcome this limitation, a new DIW technique, termed FloR3D, will be developed in this project. By integrating an evolving chemical reaction into the printing process itself, this Flow-Reactor coupled 3D printing technique allows for out-of-equilibrium microstructures to be generated within the nozzle, which is subsequently trapped upon deposition. Through on-the-fly variations of the relative flow rates into the flow reactor, FloR3D will allow for voxel-level control of the material composition and microstructure, resulting in optimized and spatially-varied hierarchical structures. By incorporating a polymerization-induced microphase separation (PIMS) process, spinodally-decomposed bicontinuous microstructures, which was previously unachievable by DIW, will be printed. Printing these bicontinuous systems, commonly used in nature to exhibit structural coloration, will result in angular-independent structural colored materials with arbitrary form factor. Furthermore, by including photoresponsive monomers within the PIMS system and an in-situ UV source, the materials' refractive indices can be tuned independently of the microstructural feature size, resulting in materials with gradient and spatially-patterned optical properties. Ultimately, beyond the complex photonic materials produced in this proposal, the design of FloR3D can be broadened to incorporate a variety of other chemical reactions, leading to a new pathway towards free-form high-performance materials.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

RIJKSUNIVERSITEIT GRONINGEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 183 174,24
Address
Broerstraat 5
9712CP Groningen
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0