Objective
To address the global energy crisis, photocatalysis is one of the most advanced, green, and clean technologies for converting pollutants into fuel. However, low-cost photocatalysts with essential properties for hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR) are very rare. After the accidental discovery of carbon nanodots (CNDs) in 2004, it is emerging as the rising star in photocatalysis due to readily low-cost synthesis, high water solubility, good photostability, and the position of conduction bands to afford catalytic reaction. However, on the one hand, research in visible-light-driven photocatalytic water splitting and CO2 reduction using CND catalyst is still in its infancy due to the very low molar extinction coefficients in the visible range. On the other hand, the contemporary literature fails to provide the actual mechanism of photocatalysis in CND materials. To date, the photocatalytic mechanism in CND materials mostly covered either single electron transfer or photo-base effect. Indeed, HER /CO2RR cannot be ensured by single electron transfer alone; electron transfer in conjunction with proton transfer, commonly referred to as proton-coupled electron transfer, is crucial to connect the actual multiple electrons and protons transfer. Therefore, exploring the proper photocatalytic mechanism in CND materials based on comprehensive globally analyzed time-resolved photophysical survey starting from femtoseconds to milliseconds and beyond using pump-probe transient absorption spectroscopy is an open research task. In addition, I will explore different synthetic strategies to increase molar extinction coefficients across the visible region to exploit the entire solar spectrum and increase the effective number of photogenerated carriers. Thus, our combined multidisciplinary approaches in synthesis, characterization, and application will definitely usher in a new era of nanomaterials research for new generations of energy sources.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis photocatalysis
- engineering and technology nanotechnology nano-materials
- engineering and technology environmental engineering energy and fuels
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20009 San Sebastian
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.