Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Probing the visible- light-driven photocatalytic mechanism to improve the photocatalytic performance of carbon nanodots (CNDs)

Objective

To address the global energy crisis, photocatalysis is one of the most advanced, green, and clean technologies for converting pollutants into fuel. However, low-cost photocatalysts with essential properties for hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR) are very rare. After the accidental discovery of carbon nanodots (CNDs) in 2004, it is emerging as the rising star in photocatalysis due to readily low-cost synthesis, high water solubility, good photostability, and the position of conduction bands to afford catalytic reaction. However, on the one hand, research in visible-light-driven photocatalytic water splitting and CO2 reduction using CND catalyst is still in its infancy due to the very low molar extinction coefficients in the visible range. On the other hand, the contemporary literature fails to provide the actual mechanism of photocatalysis in CND materials. To date, the photocatalytic mechanism in CND materials mostly covered either single electron transfer or photo-base effect. Indeed, HER /CO2RR cannot be ensured by single electron transfer alone; electron transfer in conjunction with proton transfer, commonly referred to as proton-coupled electron transfer, is crucial to connect the actual multiple electrons and protons transfer. Therefore, exploring the proper photocatalytic mechanism in CND materials based on comprehensive globally analyzed time-resolved photophysical survey starting from femtoseconds to milliseconds and beyond using pump-probe transient absorption spectroscopy is an open research task. In addition, I will explore different synthetic strategies to increase molar extinction coefficients across the visible region to exploit the entire solar spectrum and increase the effective number of photogenerated carriers. Thus, our combined multidisciplinary approaches in synthesis, characterization, and application will definitely usher in a new era of nanomaterials research for new generations of energy sources.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 181 152,96
Address
PASEO MIRAMON 182, PARQUE TECNOLOGICO DE SAN SEBASTIAN EDIFICIO EMPRESARIAL C
20009 San Sebastian
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (3)

My booklet 0 0