Project description
Scalable technology for sustainable PFAS destruction
Poly- and perfluoroalkyl substances (PFAS), often referred to as ‘forever chemicals,’ have exhibited exceptional resistance to advanced water treatment methods. They pose a significant risk due to their potential for bioaccumulation and toxicity, with over 9 000 such substances identified. Consequently, there is an urgent need for processes or technologies capable of breaking the C-F bonds that constitute PFAS without generating toxic byproducts. The ERC-funded GRAPHEC project aims to address this challenge. The project has already made progress by developing graphene sponge anodes that employ electrochemical processes to break down PFAS. While this solution is in the research and development phase, it holds the potential to advance the goals of the European Green Deal, specifically in the sustainable eradication of PFAS.
Objective
Poly- and perfluoroalkyl substances (PFAS) have been used since the 1940s and are known as “forever chemicals” due to their extreme persistency to advanced (waste)water treatment strategies. Due to the strength of the C-F bond, each released molecule of PFAS remains in the environment. Today there are more than 9,000 known PFAS, majority of them being extremely resistant to any kind of degradation, and with high bioaccumulation potentials and toxicities.
Electrochemical processes can address the challenge of PFAS presence in water, provided that the anode material is low cost and can break the C-F bond without forming toxic byproducts. Graphene sponge anode developed by our team is the first material to fulfill both requirements. In this project, we will aim at upscaling the electrochemical treatment based on graphene sponge electrodes and testing its long-term performance in degrading PFAS from complex residual streams. This will enable us to answer key scientific and technical questions required for further technology adoption by the water industry, many of them related to the fundamental mechanisms of electrochemical C-F bond breakage and features of anodically polarized graphene. Based on the results achieved to date at lab-scale, GRAPHEC technology has a strong potential to evolve into a sustainable, chemical-free destruction technology for PFAS-laden wastewaters and achieve their complete destruction at ambient temperature and pressure, in modular units, with low capital and operational cost.
Finally, this project also aims at keeping the existing intellectual property and engaging early technology adopters in Europe and beyond to form a mature network of future clients and reach a technology readiness level (TRL) 6 at the end of the project. The project will deliver a new platform technology for the removal of toxic and persistent chemicals from water and is likely to play a key role in the EU´s Green Deal Agenda for securing a toxic-free environment.
Fields of science
Keywords
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Funding Scheme
HORIZON-ERC-POC - HORIZON ERC Proof of Concept GrantsHost institution
17003 Girona
Spain