Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Holographic Assembler for 3D Cell Cultures

Project description

Advanced technology for efficient and repeatable culturing of 3D cell assemblies

Cell cultures play a crucial role in biomedical research and drug screening, with the environment and arrangement significantly influencing cell function. The difference between 2D in vitro studies and the 3D in vivo environment is crucial, particularly for patient-specific therapies and high-throughput screening. The low physiological relevance of 2D cell cultures contribute to a 90 % failure rate of drug candidates during trials. Funded by the European Research Council, the HOLOCELL project will address this by developing a 3D bioassembler. The team will create a benchtop bioassembler that aggregates biological cells, spheroids, particles or hydrogel capsules into fully defined 3D structures using acoustic holography. This user-friendly and affordable device will be compatible with established biological procedures and laboratory equipment.

Objective

Cell cultures are essential for biomedical research and drug screening. The environment and the arrangement directly affect cell function. It has become clear that biological cells behave differently when cultured on a surface as opposed to a 3D environment. This discrepancy between 2D in vitro studies and the 3D environment found in vivo is critical for cancer research, most notably patient-specific therapy and high-throughput drug screening and discovery. Almost 90% of all drug candidates fail during the trial phases and one of the main reasons identified is the low physiological relevance of 2D cell cultures. Technologies are needed that enable the fast and efficient culturing of 3D cell assemblies with high repeatability and control over size and morphology. Here, we use our recently developed technology and fabrication know-how together with the expertise from our ERC-funded research to realize the first 3D bioassembler where the shape of the cell aggregates can be precisely defined by the user. Within this ERC-POC grant we plan to develop a fully operational, stand-alone benchtop bioassembler that instantly aggregates biological cells, spheroids, particles or hydrogel capsules into fully defined 3D structures using acoustic holography. Our device will be an easy-to-use and affordable instrument that is fully compatible with established biological procedures and laboratory equipment and which allows scientists to culture the specific cell structures they need. The grant will allow us to protect our know-how, identify further markets, and develop a commercialization strategy for our technology. Overall, this project will generate the first 3D cell assembler that permits the generation of user-defined cell spheroids and custom shapes at a press of button and thus presents an innovation with a sizeable market potential.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution
€ 150 000,00
Address
HOFGARTENSTRASSE 8
80539 Munchen
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost
No data

Beneficiaries (1)