Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Illuminating neutron stars with radiative plasma physics

Objective

This research program will use first-principles radiative plasma simulations to understand how neutron stars radiate. Neutron stars are the culprits of the most infamous astrophysical emission enigmas: 1) pulsar radio emission, 2) multi-messenger signals of compact-object binary mergers, and 3) simultaneous generation of giant flares and fast radio bursts from magnetars. These emission mechanisms have remained elusive because we do not have a self-consistent theory that combines plasma physics (describing microscopic motions and energy dissipation of the magnetized gas) and radiative processes (describing the reprocessing of the energy into radiation).

This project combines the forefront plasma physics theory with exascale high-performance computing technologies to achieve two breakthroughs: 1) generation of first-principles 3D models of the radiative plasmas around pulsars, mergers, and magnetars; and 2) development of a novel open-source simulation toolkit for self-consistent and high-fidelity modeling of astroplasmas. These enable a quantitative understanding of the unsolved emission mechanisms (including efficiency, variability, and output spectra) and direct comparison to observations.

Analyzing astronomical observations with these superior physics-constrained models enable direct tests of their validity and a leap in improving the accuracy of the modern nuclear/particle physics theories of the still-unknown neutron star equation of state. The PI has a world-leading role in computational astroplasma physics, an established record of impactful and innovative research in the astrophysics of neutron stars, and 10 years of experience in state-of-the-art high-performance computing solutions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-STG

See all projects funded under this call

Host institution

HELSINGIN YLIOPISTO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 211 196,00
Address
FABIANINKATU 33
00014 HELSINGIN YLIOPISTO
Finland

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 211 196,00

Beneficiaries (1)

My booklet 0 0