Project description
Unconventional in situ growth methodologies for functional plasmonic metamaterials’ production
Nanopatterned surfaces have unique properties that can potentially revolutionise technology. Bottom-up synthesis involves constructing nanomaterials atom by atom, typically resulting in colloidal nanoparticle suspensions later assembled on a surface. Alternatively, bottom-up growth can occur directly on a substrate, but so called ‘in situ’ growth routes remain largely unexplored. The ERC-funded NANOGROWDIRECT project aims to enhance the quality and versatility of a class of approaches about which we're lacking in-depth knowledge. Employing an unconventional methodology called chemical contrast in situ growth, NANOGROWDIRECT utilises precise nanometric chemical contrast to drive nanostructure formation at predetermined sites. The project combines wet chemistry, fluid dynamics and external electromagnetic and electrochemical potentials to achieve all-around control over physicochemical properties, crystallography and surface chemistry of the grown nanostructures.
Objective
Due to their unique physicochemical properties, nanopatterned surfaces can contribute to important technological innovations for efficient optical and communication devices, long-lasting batteries, and ultrasensitive diagnostic devices. Bottom-up synthesis enable to construct nanomaterials atom-by-atom from precursors using synthetic chemistry, usually producing colloidal nanoparticle suspensions that are later assembled on a surface. Alternatively, the fabrication process can be greatly simplified by instead applying bottom-up growth directly on a substrate. However, these “in situ” growth routes remain largely unexplored and poorly understood.
To address this knowledge gap and improve versatility and quality of this class of approaches, I propose to use an unconventional methodology called “chemical contrast in situ growth” or CC-iSG, where precise nanometric chemical contrast drives nanostructure formation at pre-determined sites.
With NANOGROWDIRECT, I will develop a foundational understanding of CC-iSG through the interrogation of fundamental synthetic aspects, and maximize its potential for achieving exemplary control over nanoscale properties of nanosurfaces and metamaterials. I will interrogate the effect of the identity, concentration, and delivery of various reactants to the pre-determined reaction sites, with focus on chemical control (Objective 1) and fluid dynamic control (Objective 2). I will also test the use non-chemical external factors, such as electromagnetic fields (Objective 3), and electrochemical potentials (Objective 4).
In the short term, CC-iSG will open up unexplored directions for engineering physicochemical properties of patterned nanosurfaces, combining wet-chemistry and external stimuli. Consequently in the long term, the far-reaching impacts of NANOGROWDIRECT will go beyond the field of nanochemistry, and yield breakthroughs in (photo/electro)catalysis, energy production and storage, medicine, and communications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
39005 Santander
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.