Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

New Handles for String Scattering Amplitudes

Project description

A more harmonic string theory: reconciling gravity and quantum mechanics

The Standard Model of particle physics, the best description of the matter and force particles constituting the Universe, does not account for gravity. Unifying Einstein’s macroscale gravity with quantum gravity has been quite challenging. String theory is the only known framework that does this in a consistent way, and it leverages so-called scattering amplitudes to do it. However, its complexity has hindered computation beyond the lowest orders of scattering amplitudes. The ERC-funded StringCat project aims to break this barrier and reveal the coveted quantum properties of gravity using numerical and exact evaluation techniques and saddle-point approximation.

Objective

String Theory is currently the only known theoretical framework that unifies the concepts of quantum mechanics and gravity in a consistent way. As such, it makes concrete quantitative predictions for the interaction of gravitons in the form of scattering amplitudes. Unfortunately, the technical complexity of the theory is staggering, and most attempts to directly compute such scattering amplitudes beyond the leading orders have been stifled by technical difficulties.

This project aims to overcome these difficulties by applying three new and unconventional tools to the problem. StringScats's three-pronged strategy leverages numerical techniques, saddle-point approximation, and exact evaluation techniques such as the Hardy-Littlewood circle method. It seeks to crack the necessary hard computations in string perturbation theory and obtain a long-sought glimpse into the quantum properties of gravity. Among the numerous potential rewards we would, for example, for the first time ever get a direct handle on the analytic structure of a quantum gravity amplitude and understand the very high energy behaviour of String Theory and how it interacts with the UV-finiteness of the theory.
StringScat will also have ramifications in neighboring fields such as black hole physics, S-matrix bootstrap, number theory and the geometry of the moduli space of Riemann surfaces that features prominently in the calculation.

Scattering amplitudes represent one of the handful of accessible windows into quantum gravity and hence offer great potential for tangible progress in the subject.
Despite the enormous importance of this topic in physics, it has received far too little attention. Recent advances in the understanding of formal aspects of the string perturbation theory, developments of numerical methods, and the increasing synthesis of the subject with mathematics, now permit us to attack the problem in earnest.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-STG

See all projects funded under this call

Host institution

UNIVERSITEIT VAN AMSTERDAM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 449 500,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 449 500,00

Beneficiaries (1)

My booklet 0 0