European Commission logo
English English
CORDIS - EU research results
CORDIS

Towards early cancer detection and tumor classification using epigenomic biomarkers in blood

Project description

Advanced liquid biopsy assay for early cancer detection

Detecting cancer at an early stage can improve the chances of successful treatment and long-term survival. Dying cells release small DNA fragments wrapped around a core of histone proteins into the bloodstream, called circulating nucleosomes. These carry DNA sequence information and chemical modifications that are stable in the blood, reflecting promising disease biomarkers. The EpiCblood project, funded by the European Research Council, will explore the diagnostic potential of circulating nucleosomes for early cancer detection and tumour classification. The goal is to use several abundant histone modifications and cancer-specific combinatorial histone marks to predict the tissue of origin of the tumour and its gene expression pattern noninvasively. The results may advance liquid biopsy assays for personalised cancer management and early detection.

Objective

Early cancer detection could increase curative treatment and long-term survival. Dying cells release small DNA fragments wrapped around a core of histone proteins into the bloodstream, so-called circulating cell-free nucleosomes (cf-nucleosomes). They carry DNA sequence information and histone modifications stable in blood, reflecting promising epigenomic disease biomarkers. But, the low proportion of cf-nucleosomes originating from cancerous cells versus the large background of nucleosomes arising from dying blood cells poses significant challenges for early cancer detection using circulating cf-nucleosomes. In EpiCblood, I will tackle these challenges and propose two complementary strategies to increase the number of “cancer-signature” cf-nucleosomes for cancer detection and tumor classification. In the first strategy, I will employ my previously developed synthetic histone modification readers to profile abundant histone modifications on cf-nucleosomes allowing me to seize up to 35 percent of the human genome non-invasively. I will prove this technology’s concept by detecting earlier stages of pancreatic cancer and simultaneously classifying molecular tumor subtypes. Furthermore, I hypothesize that tumorigenesis gives rise to cancer-specific genomic sites decorated with combinatorial histone marks, so-called “bivalent” regions, found explicitly in cancer and not in healthy adult cell types. In the second strategy, I will employ a computational pipeline to map cancer-specific bivalent sites across multiple cancer genomes. I will use my well-established combinatorial histone mark readers to test their diagnostic potential as cancer-specific biomarkers in blood plasma from healthy donors and cancer patients. My genomics expertise and proven technology provide an excellent basis for accomplishing the planned goals. EpiCblood will be a major step towards developing precise and rich liquid biopsy assays for multiple clinical applications in cancer management.

Host institution

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Net EU contribution
€ 1 499 999,00
Address
GESCHWISTER SCHOLL PLATZ 1
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 1 499 999,00

Beneficiaries (1)