Project description
CO2 hydrogenation: determining the active state of catalyst surfaces in plasma
Plasma-assisted catalytic conversion (PLAC) of CO2 via CO2 hydrogenation is a promising way to simultaneously convert greenhouse gas to fuel and reduce dependence on fossil fuels. Two key challenges include activating the stable CO2 molecule at low temperature and guiding the reaction towards the right product. The catalyst surface determines the reaction pathway and selectivity, but the active state of catalyst surfaces in plasma is not known. The ERC-funded SURPLAS project aims to be the first to determine the active state of single-crystal surfaces and applied powder catalysts in plasma and to characterise selectivity and metal-support interactions in PLAC. This knowledge will be used for the rational design of plasma catalysts for CO2 hydrogenation.
Objective
Renewable energy is key to tackling climate change and reducing our dependence on fossil fuels. The intermittent supply of renewable energy hampers its efficient usage and creates a pressing need for innovative energy conversion approaches. Energy-to-fuel conversion using plasma-assisted catalytic conversion (PLAC) is highly promising for producing urgently needed fuels from greenhouse gases. In PLAC, reactants are activated in a plasma discharge, allowing for remarkable efficiencies beyond the limits of thermal catalysis. The catalyst surface defines the reaction pathway and selectivity, and is thus key in catalyst design. However, at present the active state of catalyst surfaces in plasma is unknown, limiting the impact of PLAC by inhibiting the design of dedicated plasma catalysts.
In SURPLAS, I will overcome this challenge and unlock the full potential of PLAC by determining the surface reaction mechanisms of catalysts in plasma and demonstrating the rational design of plasma catalysts for CO2 hydrogenation. My expertise in surface reactions, materials design, and in situ spectroscopy forms the basis of a pioneering approach to analyzing surfaces while they are exposed to microwave plasma. My groups unique embedding with plasma experts from industry and academia will facilitate the study of complex catalyst-plasma interactions. I will be the first to determine the active state of single-crystal surfaces and applied powder catalysts in plasma and to derive trends in selectivity and metal-support interactions in PLAC. This breakthrough in understanding will allow for the rational design of plasma catalysts, which I will validate by catalytic performance measurements.
This project will revolutionize PLAC by demonstrating catalyst design based on atomic-scale understanding of surface reactions in plasma. SURPLAS will allow me to lead the way into a new era of energy conversion, at a time when urgent need for fuels meets record growth in renewable energy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3526 KV UTRECHT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.