Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Converting N2 directly into amines through multimetallic catalysis

Project description

Multimetallic molecular catalysts for direct N2 conversion into amines

Amines are nitrogen-containing molecules that are essential in our daily lives, but making them from the most abundant source of N atoms, N2, often requires long inefficient pathways. A goal in chemical research is to develop catalysts that directly convert N2 into amines. However, this process faces challenges due to the inherent low reactivity of N2. The ERC-funded N2-CONVERT project aims to develop molecular catalysts containing multiple metals for this conversion. It will create rigid ligand platforms to position multiple metal centres closely together. Through experimental and computational studies, the project will investigate how factors like metal separation and site accessibility affect N2 activation. The findings will aid in designing multimetallic complexes that enable direct (electro)catalytic conversion of N2 into amines.

Objective

Nitrogen containing molecules (amines) are ubiquitous in our daily lives. The N atoms in these essential compounds originate from dinitrogen (N2), but often undergo a vastly energy inefficient route to be incorporated into molecules. Hence, it has been a long-standing goal to develop catalysts that enable the direct conversion of N2 into amines to provide an efficient and sustainable alternative for amine synthesis. While various metal complexes enable the stoichiometric conversion of N2 into amines, a key problem preventing catalytic conversion lies in the incompatibility of the required harsh reductants with the reagents for making N–C bonds.

In this project, I aim to develop well-defined molecular catalysts wherein multiple metals work together to directly convert N2 into amines. To this end, I will develop innovative ligand platforms based on rigid core scaffolds, designed to bind 2, 3 or 4 metal centers in close proximity. In a systematic combined experimental and computational study, I will obtain fundamental understanding on how aspects like metal-metal separation, number of metals, reduction state or accessibility of metal sites, affect the cooperative binding and activation of N2. This will enable me to identify design parameters of multimetallic complexes that enable N–C bond formation at metal-bound N2 without requiring harsh reductants. With this information, I will rationally design multimetallic complexes that enable the direct (electro)catalytic conversion of N2 into amines. My strong background and track record in ligand design, N2 activation, multimetallic coordination chemistry and catalysis puts me in a unique position to realize the highly ambitious goals of this project.

The N2-CONVERT project will provide a new paradigm on how we look at N2, from an inert molecule to an abundant, cheap and non-toxic N-atom building block. In the long run, it will lay the foundation for a sustainable alternative to the current wasteful way of making amines.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-STG

See all projects funded under this call

Host institution

UNIVERSITEIT UTRECHT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 575 000,00
Address
HEIDELBERGLAAN 8
3584 CS Utrecht
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 575 000,00

Beneficiaries (1)

My booklet 0 0