Project description
Superposition states of motion via a hybrid atom-nanomechanical oscillator system
Nanomechanical oscillators are excellent sensors. Their small mass makes them very sensitive to small perturbations and they lose very little energy to the environment (measured by the quality factor). Novel ‘strained’ nanomechanical resonators have unparalleled quality factors at room temperature and thermal-limited force sensitivities; however, their dielectric materials interact minimally with sensing targets and other quantum systems. The ERC-funded SEQUENCE project aims to functionalise strained nanomechanical oscillators with nanomagnets, allowing sensing of single-proton spins. These will then be coherently coupled to a single atom via optical tweezer technology to generate quantum states of motion. The devices can also be exploited in on-chip force sensors for unprecedented characterisation of biomolecules and quantum devices.
Objective
Strained nanomechanical resonators have record-high quality factors at room temperature and state-of-the-art thermal-limited force sensitivities. However, they are typically made of dielectric materials that do not interact strongly with neither sensing targets nor other quantum systems. I propose to functionalize ultracoherent mechanical resonators with a nanomagnet to unleash their potential both for nanoscale magnetic sensing and the creation of hybrid quantum systems. The force sensitivity of the best strained nanomechanical resonators allows sensing of single proton spins when functionalized with a nanomagnet, providing new ways to characterize quantum devices and to investigate the three-dimensional structure of complex molecules such as proteins.
Direct coupling of mechanical resonators and a single two-level system is a challenging but attractive route to synthesis of arbitrary quantum motional states in mechanical resonators. The low frequency of strained nanomechanical resonators has made this type of interaction elusive, but recent progress makes it conceivable to coherently couple a single atom and mechanical motion by direct magnetic coupling. I will leverage optical tweezer technology to directly couple the internal quantum states of a single atom to the motion of an ultracoherent mechanical resonator and exploit this interaction to generate quantum states of motion.
By combining integrated photonics with ultracoherent nanomechanical resonators, SEQUENCE will develop unprecedently sensitive on-chip force sensors that can be used for characterization of biomolecules and quantum devices. The hybrid atom-mechanical system will realize a new interaction between single quantum systems and mechanical resonators which can be used in tests of fundamental physics, quantum sensing and quantum information processing.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
- natural sciences physical sciences optics cavity optomechanics
- natural sciences physical sciences quantum physics
- natural sciences physical sciences atomic physics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology medical engineering diagnostic imaging magnetic resonance imaging
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 GOTEBORG
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.