Project description
Nucleic acid templates: flexible use in the design of novel protein assemblies
Proteins are the workhorses of cells, enabling most cellular functions including signalling, recognition and immunity by acting as catalysts, signal receptors, switches, motors and tiny pumps. Mimicking these roles with engineered protein assemblies can support applications in areas from biomedicine to energy and the environment. The European Research Council-funded DNA-TO Pass project will combine two cutting-edge areas of science, DNA nanotechnology and protein design, to create a new class of engineered nanomaterials. Using nucleic acid templates in three different approaches, they will control the assembly and final characteristics of protein assemblies. The synergy between DNA nanotechnology and protein design will unlock properties previously inaccessible.
Objective
Here I propose to create a new class of designed nanomaterials that will combine the advantageous features of protein design and DNA nanotechnology: nucleic acid-templated protein assemblies. I propose three different approaches that all utilize the addressability of nucleic acids on the nanometer to micrometer length scale to control size, shape, and composition of designed protein assemblies.
In the first approach, the structural and mechanical properties of the assembly will be defined by the protein components, while the nucleic acid component serves merely to define the dimensions of the assembly and to introduce addressability to an otherwise symmetric, repetitive assembly. All components, including the nucleic acid template, can be genetically encoded, potentially enabling assembly of entire nanoparticles inside living cells.
The second approach uses more complex nucleic acid templates, such as DNA or RNA nanostructures, to control size, shape, and addressability of two- or three-dimensional protein assemblies. The shape of the final protein assembly reflects the shape of the templating nucleic acid nanostructure, and the protein assembly can be viewed as a coating that adds rigidity, stability, and, crucially, biological functionality to the template nanostructure. Both approaches one and two are amenable to library-scale screening by coupling size and shape of the particles as well as patterning of functional domains (“phenotype”) to the sequence of the nucleic acid template (“genotype”).
In a third approach, the nucleic acid is not incorporated into the final assembly, but merely serves as a “mold” to define size and composition of a protein assembly. A single DNA origami mold could thus “catalyze” the assembly of many nanoparticles, circumventing potential scalability bottlenecks from approach two.
These assemblies use the synergy between DNA nanotechnology and protein design to achieve properties that would not be accessible to either technology alone.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics DNA
- natural sciences biological sciences biochemistry biomolecules proteins
- engineering and technology materials engineering coating and films
- natural sciences biological sciences genetics RNA
- engineering and technology nanotechnology nano-materials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3400 KLOSTERNEUBURG
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.