Project description
An unparalleled holographic microscope sheds light on organic photomaterials
Solar cell efficiencies have increased tremendously over the past decades. Lowering the materials’ costs will be critical to wider adoption. Using organic and hybrid materials rather than conventional inorganic materials like silicon could be the solution. However, their heterogeneous morphology, which is essential to their functionality, has made it difficult to experimentally characterise the nanoscale, ultra-fast processes taking place. The ERC-funded HOLOFAST project aims to leverage its new holographic microscope with non-linear structured illumination to shed light on the matter. With 10-femtosecond spatial resolution and 50-nanometre spatial resolution in addition to its wide field of vision, the microscope could finally illuminate charge separation and extraction processes over large sample areas.
Objective
Solution-processed organic and hybrid materials have immense promise for low-cost photovoltaic devices. Their intrinsically heterogeneous morphology directly impacts the photophysical processes that happen over multiple timescales down to femtoseconds and which ultimately define functionality, such as carrier diffusion, charge separation and recombination. Currently, experimental techniques that can simultaneously study the nanoscale morphology and the ultrafast photophysics are limited. Ultrafast microscopes are restricted to single point or very small fields of view, lacking the large sample area coverage needed to place observations in their proper statistical context. Moreover, they are generally incompatible with super-resolution imaging, preventing the required nanoscale spatial resolution from being achieved. Recently, I introduced a widefield transient holographic microscope using off-axis holography that has shot-noise limited performance and can image large sample areas. Importantly, this approach is compatible with nonlinear structured illumination, a widefield super-resolution technique based on combining a spatially structured illumination pattern and a nonlinear sample response, with the spatial resolution being only limited by how many nonlinear terms can be acquired.
In HOLOFAST, my team and I will combine the new ultrafast holographic microscope with nonlinear structured illumination to bring unprecedented photophysical knowledge of organic photovoltaic materials, with temporal resolution down to 10 femtoseconds, spatial resolution down to 50 nm while simultaneously imaging ~100 micron areas, correlating morphology with excited state dynamics. This will enable us to finally reveal the heterogeneity of charge separation and extraction processes over large sample areas. HOLOFAST will create a photophysical and morphological database that will be valuable to understand and solve the problems that currently limit device efficiencies and lifetimes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been human-validated.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been human-validated.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.