Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Deciphering the role of surface mechanics during cell division

Project description

Studying the role of surface mechanics in cell division

Cell division is essential for life, and its dysregulation can lead to diseases such as cancer. In eukaryotic cells, shape changes during division are driven by the mechanics of their surface. Recent molecular tools have revealed that the connection between the plasma membrane and the cortical cytoskeleton plays a crucial role in regulating this process in cultured cells and mouse embryos. The ERC-funded MitoMeChAnics project will explore the relationship between cell surface architecture, mechanical properties, and morphology to better understand how surface mechanics influence cell division. The research will utilise novel molecular tools, super-resolution microscopy, cryo-electron tomography, and theoretical models to investigate the membrane-cortex interface and uncover how cells use mechanical properties to regulate mitosis.

Objective

Cell division is fundamental for all life forms and its dysregulation can lead to severe diseases including cancer. The dramatic shape changes eukaryotic cells have to undergo to divide are mostly driven by the cell surface, a complex system that can dynamically modify its mechanical properties. While the importance of physical cues for cell division has long been recognized, the lack of specific tools that modify particular physical properties and bridge molecular-to-cellular scale biophysics prevent us from understanding how cells use their mechanics to regulate form and function. To address this, my group has recently developed a new class of molecular tools that for the first time allows us to manipulate surface mechanics specifically and acutely in living cells. Exploiting this powerful new structural biophysics approach, our first discoveries excitingly demonstrate that the strength of tethering between the plasma membrane and the cortical cytoskeleton is a key control mechanism for cell division, both in cultured cells as well as in mouse embryos.
The overarching goal of MitoMeChAnics is to systematically understand how cell surface mechanics controls the different steps of division. My team and I will systematically and quantitatively link cell surface architecture with the resulting mechanics and morphology to determine the structure-function relationship at the cellular periphery in space and time. To this end, we will deploy novel molecular tools and combine them with cellular biophysical measurements, super resolution microscopy and in situ cryo-electron tomography. Moreover, we will build data-driven theoretical models to unravel the physical principles that control the membrane-cortex interface, and test their predictions with novel optogenetic tools. Our project thus takes a highly interdisciplinary approach, combining mechanobiology, molecular engineering, structural analysis and theory to decipher how cells their mechanics to control mitosis.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-COG

See all projects funded under this call

Host institution

EUROPEAN MOLECULAR BIOLOGY LABORATORY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 200 287,00
Address
Meyerhofstrasse 1
69117 Heidelberg
Germany

See on map

Region
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 200 287,00

Beneficiaries (1)

My booklet 0 0