European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Icevoltaics: from the Workman-Reynolds Freezing Potentials to Electrical Energy

Objectif

Water and aqueous solutions release a huge amount of thermal energy during freezing. Accessing energy utilizing the freezing process has never been attempted until today. It is known that orderly freezing of dilute aqueous solutions can result in electrical potentials as great as 230 volts at the ice-solution interface, namely the Workman-Reynolds freezing potential (WRFP), and a maximal electrical current of 1 µA. Based on our newly published results of counter ion separation during icing growth in ionic liquids, this project aims to combine high-throughput computing and nanotechnology for probing the approach of controlling and utilizing stable WRFPs and for the first time to enable energy exploration in the freezing process of aqueous solutions. Specifically, ionic liquids will be screened for maximizing WRFP and electrical energy output via atomistic modeling and multiscale experiments. Critical parameters for WRFP, including ion concentration, temperature and freezing rate, will be investigated for their effects in electrical energy generation. Novel electrical energy output based on WRFP will be constructed and tested, which will seed an entirely new green energy acquisition research and application field. The project, termed Icevoltaics, explores an un-touched energy source and provides highly innovative solutions of the future and clean energy.

Mots‑clés

Régime de financement

HORIZON-ERC - HORIZON ERC Grants

Institution d’accueil

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Contribution nette de l'UE
€ 2 000 000,00
Adresse
HOGSKOLERINGEN 1
7491 Trondheim
Norvège

Voir sur la carte

Région
Norge Trøndelag Trøndelag
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 2 000 000,00

Bénéficiaires (1)