Project description
Peeling back the layers of Mercury’s origin and evolution
Mercury is the least explored terrestrial planet in our solar system, with many unresolved questions about how it has formed and evolved. Data collected from ongoing exploration of the planet by BepiColombo satellites will reveal much about its history. The ERC-funded IronHeart project theorises that Mercury was once a larger chondritic planet (proto-Mercury) whose mantle was stripped away in collisions. To validate this, IronHeart will conduct experiments to determine how the core and mantle compositions of proto-Mercury evolved into their current state. Further analysis of these compositions will elucidate phase equilibria of the inner layers, enabling calculation of their thermophysical properties. Finally, it will integrate empirical results with BepiColombo data to develop thermal and geophysical models of Mercury’s structure and evolution.
Objective
Mercury is a metal-rich planet from which Earth-based and spacecraft data were collected. Our understanding of its interior structure and thermochemical evolution is however still relatively poor. This is due to: (1) large uncertainties on its polar moment of inertia and surface composition; this will be largely improved by the BepiColombo mission; (2) an unknown bulk-planet composition; and (3) a poor knowledge of some key thermophysical properties (e.g. phase stability, temperature, density) of solid/liquid metals and silicates inside Mercury. This is because under Mercury’s reducing conditions, elements behave differently than on other planets. Currently available phase diagrams for the Moon and Mars are thus irrelevant for calculating the compositions and physical properties of Mercury’s core, mantle and crust. Improving such constraints is critical but requires new experiments under hitherto unexplored conditions; they will be done in IronHeart.
So far, it was largely neglected that many compositional features of Mercury are inconsistent with its direct accretion as a small, metal-rich planet. IronHeart’s working hypothesis is that Mercury is merely the remnant of a larger, Martian-sized, chondritic planet (which we call proto-Mercury) involved in collisions having stripped away much of its mantle. This process did eventually set the final composition of modern Mercury. For the first time, IronHeart will evaluate experimentally how proto-Mercury controlled the core and mantle compositions of modern Mercury. Further experiments on these compositions will provide phase equilibria of Mercury’s internal layers allowing us to calculate their thermophysical properties. By combining those with BepiColombo data into thermal and geophysical models, we will provide a clearer than ever picture of Mercury’s structure and evolution. IronHeart will also be critical to understanding dense exoplanets and the Earth, which accreted from similar building blocks as Mercury.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering astronautical engineering spacecraft
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences physical sciences astronomy planetary sciences natural satellites
- natural sciences physical sciences astronomy planetary sciences planets exoplanetology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3000 LEUVEN
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.