Project description
Root diameter as an indicator of better resilience to drought
Choosing to grow crops whose root systems are better at taking in water from the soil is one solution to improving crop resilience to drought, but scientists lack the indicators they need to make that determination. Funded by the European Research Council, the DROOGHT project aims to test its hypothesis that the distribution of the root diameter within a cereal root system is an indicator of its structure and functions at the organ and field scales, a parameter easy to monitor at large scale. The hypothesis will be tested using in silico and experimental in vivo methods to identify the dominant structural root traits that modulate water uptake under water-limited conditions.
Objective
As droughts are becoming more frequent and severe, there is a call for adaptation strategies that enhance the crop’s resilience to these climate conditions. One pathway to do so is to select crops whose root system optimize the soil water uptake. However, the identification of adequate ideotypes is compromised by the limited understanding of the structural drivers controlling the water uptake from the root to crop scales. This knowledge gap is attributable to the multiscale and nonlinear nature of the soil-plant interactions. DROOGHT aims to address these gaps by identifying the dominant drivers of the complex below-ground processes in cereal crops. Based on suggestive pieces of evidence, the project builds on the primary hypothesis that the distribution of the root diameter within a cereal root system is an indicator of its structure and functions at the organ and field scales. The value and groundbreaking nature of such an indicator would lie in its simplicity: diameters are one of the easiest root traits to measure in any field set-up and at large scales. I will test this hypothesis and identify the dominant structural root traits controlling plant water uptake dynamics under water-limited conditions using complementary in silico and in vivo approaches. The outputs of this project will be (i) a novel multiscale computational framework that links local root structures to plant and crop functions; (ii) a phenotyping pipeline that links root structure to function; and (iii) the identification of cereal root properties favorable to higher yields across European pedoclimatic conditions and climate change scenarios. More broadly, this project will allow a significant step forward in our understanding of the role of root systems' structural traits on water uptake dynamics. It will provide practical insight for breeders and simpler, more elegant below-ground processes model components to insert into crop models.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1348 LOUVAIN LA NEUVE
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.