Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Universal Model of the Density of Deep Silicate Melts

Project description

Advanced laser technology helps identify how molten rock behaves inside Earth

The density of silicate melts plays a crucial role in shaping Earth’s evolution and mantle dynamics, influencing whether crystallising materials rise or sink, as well as controlling melt distribution and migration. However, measuring these densities under high pressure and temperature mantle conditions has been extremely difficult owing to tiny sample sizes, chemical reactivity and the lack of crystalline structure. The ERC-funded Glass2Melt project will leverage a novel class of white laser spectroscopy methods to analyse synthetic silicate glasses and melts across a wide compositional range and at pressure-temperature conditions ranging from Earth's crust to its core. The proposed approach aims to create a universal density model describing silicate melts, providing insights into magma ocean solidification, mantle heterogeneity, seismic velocity structures and magma behaviour in modern Earth.

Objective

The starting conditions for the Earth’s evolution were set by gravitational differentiation in the solidifying magma ocean. Yet, a thorough understanding of the magma ocean dynamics and thus of the primordial Earth is lacking. One key unknown is the density of silicate melts at high pressure, which determines whether the crystallizing phases rise or sink. Magma density also governs the storage, spatial distribution, and migration of melts in the present-day Earth. Densities of silicate liquids at mantle pressures and temperatures are extremely difficult to measure because of the tiny sample size, melt chemical reactivity, and its lack of crystalline structure. The use of glasses as proxies of melts lifts some but not all of these challenges. Albeit needed for a holistic picture of planet Earth, no density systematics exists for glasses or melts across the pressure range of the entire mantle.

Glass2Melt will employ and further a novel class of fast white laser spectroscopy methods to measure the density of multicomponent synthetic silicate glasses and melts at mantle pressure-temperature conditions. Our approach is ground-breaking because it allows to thoroughly explore a large compositional space and determine the density of any deep silicate melt. Our results will (i) parametrize a universal silicate melt density model applicable to the entire mantle, and (ii) quantify solid-liquid buoyancy throughout the whole crystallizing magma ocean.

Glass2Melt will have a broad, lasting impact on our understanding of the Earth’s interior and its evolution over geologic time. The new density model will provide critical input for future numerical simulations assessing fundamental questions about the solidification of the primordial magma ocean, as well as the initiation and development of physical and chemical heterogeneity in the mantle. It will also be crucial for deciphering deep low seismic velocity structures, and to modeling magma dynamics in the present-day Earth.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-COG

See all projects funded under this call

Host institution

GFZ HELMHOLTZ-ZENTRUM FUR GEOFORSCHUNG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 998 856,00
Address
TELEGRAFENBERG
14473 POTSDAM
Germany

See on map

Region
Brandenburg Brandenburg Potsdam
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 998 856,25

Beneficiaries (1)

My booklet 0 0