Project description
Probing the magnetic fields in A- and F-type stars
Magnetic fields are crucial to stellar evolution, yet their role in intermediate-mass stars remains poorly understood. While only 10% of A- and F-type stars exhibit detectable magnetism, ~60% of their evolved counterparts—red giants—harbour strong internal fields. If magnetism exists in red giants, it must also be present in their progenitors, A- and F-type stars, implying that these fields remain undetected. The ERC-funded MAGNIFY project will solve this mystery using asteroseismology to probe stellar interiors and uncover hidden magnetic fields. It will investigate stellar spots to understand the formation and evolution of surface magnetism. Combining observations from Kepler, TESS, and Gaia with advanced stellar models, MAGNIFY will disentangle magnetic effects from other processes, shedding new light on stellar structure and evolution.
Objective
Magnetic fields are ubiquitous and have a substantial impact on galactic, stellar and planetary evolution and on life. Theoretical models imply that magnetic fields can affect stars from the deep interior to the outermost layers at each stage of evolution. Yet the origin, geometry and evolution of magnetic fields often remain a mystery. Consequently, standard stellar evolution models do not consider the interaction of magnetic fields with other physical processes.
Extensive surveys show that only 10% of the intermediate-mass A&F-type main-sequence stars have detectable magnetic fields. However, studies show that up to 60% of red giant stars that evolve from these stars have strong internal magnetic fields. Stellar evolution dictates that if the magnetic fields exist in these red giants, they must also exist in younger stars. This discrepancy raises many open questions: Have surface magnetic fields in A&F stars been below the detection threshold of modern instruments? Are their magnetic fields confined to stellar interiors and never penetrate the surface? If so, how may we detect them? Are there physical processes that prevent A and F stars from producing and maintaining stable magnetic fields?
MAGNIFY aims at answering these questions by 1) investigating the existence of internal and surface magnetic fields in A&F stars using asteroseismology and 2) exploring the mechanisms producing magnetic fields by studying stellar spots.
With asteroseismology, we can use stellar pulsations to probe deep into the stellar interior to detect the presence of hidden magnetic fields. We will use data from the Kepler, TESS and Gaia space missions to study A&F type pulsators and use stellar evolution and pulsation models to disentangle the signatures of magnetic fields from other physical processes. Finally, we will use measurements of stellar spots in a large number of A&F stars to broaden our understanding of magnetic field generation and how it varies with stellar mass and age.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences astronomy stellar astronomy asteroseismology
- natural sciences mathematics pure mathematics geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2800 KONGENS LYNGBY
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.