Project description
Revolutionary bio-hybrid materials for pharmaceuticals research
Bio-hybrid materials and physiochemical interactions hold great promise for advancing the pharmaceutical and chemical sectors. However, current developments in these technologies are limited, with few functional options available. In this context, the EIC-funded Bio-HhOST project aims to develop a bio-hybrid material composed of living and artificial cells, enabling a wide range of interactions. The incorporation of artificial cells will facilitate the proliferation, function, and differentiation of living cells, while also possessing functional metabolisms capable of revolutionising the sector through chemical interactions. Additionally, the project employs 3D tissue models and simulations to enhance the understanding of the material and its response to diseases, thereby reducing the necessity for animal research.
Objective
Bio-HhOST will build bio-hybrid materials that comprise living & artificial cells, in dynamic communication, such that artificial cells may influence the proliferation, differentiation and function of living cells. This will be accomplished by producing precision engineered, microscale, liquid and lipid bilayer-based, chemically compartmentalised artificial cells, co-localised with live cells. This will be done by an interdisciplinary team of biologists, engineers, mathematicians and entrepreneurs. The artificial cells will contain functional metabolisms, and the ability to respond to chemical stimuli in the environment to release signaling molecules, on demand, to regulate the neighboring living cells, as found in complex biological tissues. These new chemically programmable organoid-synthetic tissues will enable a paradigm shift, in both ability to elucidate and control the complexity of physio-chemical interactions within 3D tissues, and reduce animal use in pharmaceutical R&D.
To achieve these ambitions we have designed an integrated multistage workplan driving towards the following overarching aims:- Aim 1. Create 3D tissues where spatial regulation of living cell differentiation is determined by co-located (chemically programmable) artificial cells. Aim 2. Regulate and maintain such 3D tissues by dynamic communication between live and artificial cells. Aim 3. Develop multi-level, multi-approach models of organoid-synthetic tissues behavior. These will be applied to target applications; Aim4. Evaluating drug delivery vectors for next generation biological therapeutics. And Aim5. generation of complex tissues formed of distinct different regions, not achievable with current organoid protocols. These exemplify our wider ambitions for the Bio-HhOST approach including to, i) understand cell behavior in increasingly realistic 3D tissue models, ii) elucidate targets for the treatment of disease, and iii) enable the reduction of animal use in pharmacuetical research.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Programme(s)
- HORIZON.3.1 - The European Innovation Council (EIC) Main Programme
Funding Scheme
HORIZON-EIC - HORIZON EIC GrantsCoordinator
38122 Trento
Italy