Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Rylenediimide-(Bis)triazinyls: Synthesis, Characterization, and Magnetic Properties

Objective

Polycyclic aromatic hydrocarbons (PAHs) with stable open-shell ground-states are needed for state-of-the-art applications, e.g. organic spintronics, electronics, energy storage etc. Herein, we propose rylenediimides (naphthalenediimide; NDI / perylenediimide; PDI) as promising PAH scaffolds for building multifaceted Blatter-type (di)radical conjugates that are typically inherently stable but also readily prepared. The introduction of [e]-ring fusion of the triazinyl moiety (Blatter-type) promotes planarization and rigidity of the rylenediimide core to allow spin delocalization, which electronically stabilizes the rylenediimides-(bis)triazinyl conjugates: DFT calculations support the high spin delocalization across the NCNN tetrad (triazinyl) unit and the backbone (NDI/PDIs). Three rylenediimide-mono(triazinyl) and two rylenediimide-bis(triazinyl) conjugates will be prepared and studied. The latter were selected from DFT computational studies of eleven possible NDI/PDI-bistriazinyl conjugates owing to low singlet-triplet energy gaps (< 1 kcal/mol) that indicate potential singlet biradical behavior. The triplet states of these conjugates could be accessible by heat or light which will open up the opportunity of having desirable switchable materials. The selected five rylenediimide-(bis)triazinyl conjugates will be synthesized via our previously optimized straightforward synthetic protocols. After standard characterization, magnetic and spintronic properties (conductivity and film forming properties) will be investigated. Single crystal X-ray crystallography, EPR and SQUID studies will validate spin states, singlet-triplet energy gaps, and solid-state magnetic properties. The project will advance the field of organic electronics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

UNIVERSITY OF CYPRUS
Net EU contribution
€ 164 328,00
Address
AVENUE PANEPISTIMIOU 2109 AGLANTZI
1678 Nicosia
Cyprus

See on map

Region
Κύπρος Κύπρος Κύπρος
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data