Objective
Forests, insect swarms, bones during remodeling, are striking examples of biological systems whose elements possess the ability to sense and exchange signals. These signals are exploited to adapt to evolving environmental conditions and to learn how to improve performance, in some cases without a centralized control.
Can materials and structures be enabled with the same capabilities? How can we build devices that exchange information on a mechanistic base and exploit these to learn how to optimally react to external stimuli? To what extent can materials and structures be endowed with active inference processes which mimic brain activities?
Finding answers to these questions is the challenge of IMMENSE, with the overarching aim to create materials and structures able to sense, exchange signals, interpret and compare them, thus achieving self-learning and self-adaptation. This will be a major step toward the design of sentient materials and structures.
Solid and structural mechanics, solid-fluid interaction, smart architected metamaterials, coupled with multi-physics phenomena at micro and macro scales, will be combined to implement sensing and signal control abilities on mechanistic bases.
Complex dynamic responses of oscillator arrays, coupled with physical “in materia” computing replicating classification and learning processes, will be innovative tools designed to implement learning and reacting abilities.
Experiments will be performed at micro and meso scales on “ad hoc” designed proof of principles prototypes, to obtain evidence of sentient materials and structures.
IMMENSE will set the stage for a new class of materials and structures implemented with local, decentralized sensing, monitoring and reacting abilities and will open to a variety of new applications, including local self-healing of construction materials and biomedical prosthesis, new monitoring and control of industrial appliances, advanced unmanned vehicles and satellites.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
- natural sciences biological sciences zoology entomology
- natural sciences computer and information sciences computational science multiphysics
- medical and health sciences medical biotechnology implants
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20133 Milano
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.