Objective
Ultrafast electron microscopy relies on the spatial, spectral, and temporal manipulation of free electrons with nm/meV/fs precision to map the structural dynamics as well as the vibrational and electronic ground and excited states of nanomaterials. With QUEFES I will introduce a conceptually disruptive approach to capitalize on the quantum nature of free electrons and their interactions with matter and radiation fields aiming to obtain previously inaccessible information on the atomic-scale dynamics of such materials, to reveal hidden properties of the quantum vacuum, and to control the many-body state of quantum matter.
I will address five challenges of major scientific relevance: (i) the spatiotemporal control over the density matrix of free electrons by interaction with suitably designed optical fields to overcome the current limits of space/time/energy resolution in time-resolved electron spectromicroscopy; (ii) a disruptive approach to map the nanoscale quantum fluctuations and the out-of-equilibrium state associated with optical near fields in vacuum and polaritonic excitations in nanomaterials; (iii) a Fourier-transform-inspired method to image the spatiotemporal evolution of atomic structures, charge carriers, and dynamical screening; (iv) the use of free electrons to flexibly read and write the many-body quantum state of trapped Rydberg atoms and quantum gases; and (v) the realization of all-electron pump-probe spectroscopy combined with the formation of dynamically screened multiple free-electron bound states for lossless charge transport in a semiconductor.
I will pursue these research frontiers by relying on the strong interdisciplinary theoretical background of my group at the intersection between electron-light-matter interactions and nanophotonics, introducing a change of paradigm in the use of free electrons to break the current limits of spectromicroscopy and having the potential for revolutionizing our ability to image and manipulate the nanoworld.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology nanotechnology nano-materials
- engineering and technology nanotechnology nanophotonics
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08860 Castelldefels
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.