Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Modelling transient granular flow

Project description

Pioneering model captures granular liquid and solid flow behaviours

Granular materials can flow like liquids and some solids, as observed when ‘pouring’ sand of different volumes through one’s fingers. When it comes to modelling this phenomenon, capturing its dual nature has proved challenging. Constitutive models are continuum mathematical models representing the constitution of materials as exhibited by their mechanical properties. Funded by the European Research Council, the MOTRAN project aims to develop a constitutive model capable of representing both liquid and solid flow behaviours of granular materials by decomposing the stress rate into a frictional and collisional part. The model will then be expanded to enable multiscale analysis, and pioneering innovations will support a numerical model. Both models will be validated experimentally.

Objective

Granular materials are omnipresent in our daily life. The same granular material can behave like solid and fluid, which poses a formidable challenge to the constitutive models and numerical methods. Traditionally, constitutive models for the solid- and fluid-like behaviour have been developed for the respective flow regimes in different engineering/scientific disciplines with hardly any intersections. A single constitutive model capable of describing the transient behaviour during phase transitions in both solid-like and fluid-like regimes is a challenging task with enormous application potential.
MOTRAN takes on this challenge with a simple yet efficient ansatz by decomposing the stress rate into a frictional and collisional part, which gives rise to an unconventional constitutive model with the 2nd order strain rate similar to the acceleration of motion. It serves as an excellent classifier for steady and transient motions. This constitutive model is then augmented to include a length scale in micropolar continuum for multiscale analysis. Based on the mixture theory, the field equations are established in rate form for the first time and discretised by a multi-layer SPH model. For polydisperse granular flow with individual large particles, the SPH model is coupled with own developed Surface Mesh Represented DEM to simulate particles of arbitrary shapes. Advanced solution techniques are developed based on multi-GPU acceleration for high fidelity simulation of large-scale problems. The constitutive model is calibrated by laboratory experiments on natural granular materials and their transparent surrogate. The numerical model is validated by scaled model tests under elevated acceleration in centrifuge as well as real-world cases of our database. MOTRAN is an exciting endeavour with the potential to create a new paradigm that will revolutionise the way how transient granular flow is to be modelled.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-ADG

See all projects funded under this call

Host institution

UNIVERSITAET FUER BODENKULTUR WIEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 498 551,00
Address
GREGOR MENDEL STRASSE 33
1180 Wien
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 498 551,00

Beneficiaries (1)

My booklet 0 0