Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Surfing radio Waves to detect liquId water in the solar systeM

Project description

Accurately interpreting radar signals to detect ice in Jupiter’s moons

Planned space missions will study the icy Galilean moons of Jupiter via radar sounders to detect subglacial liquid water. Ensuring accurate detections and minimising false positives will require knowledge of the dielectric properties of the ice and their effects on radar signal propagation. The ERC-funded SWIM project will develop pioneering methodologies and apply them. The team will conduct dielectric measurements across a range of frequencies and temperatures and will, empirically and through molecular modelling, characterise the structural and chemical behaviour of different ice types . The group’s similar work, which led to the first discovery of an extraterrestrial subglacial stable body of liquid water on Mars, lays the foundation for success.

Objective

In the near future a number of space missions will aim to study the icy Galilean satellites of Jupiter to detect subglacial liquid water, using radar sounders. To properly interpret the radar data, it is necessary to understand the dielectric properties of the icy shells of these bodies, as they control radar signal penetration and anomaly (i.e. water) detection. The current knowledge of these properties for the types of water ices believed to be present is limited, which would potentially produce incorrect interpretations of the radar data, thus risking the scientific goals of these missions. Based on extensive experience in characterizing the dielectric properties of planetary analogues, which led me and my group to discover the first extraterrestrial subglacial stable body of liquid water on Mars, we intend to develop new methodologies and protocols to create a groundbreaking knowledgebase that fills this critical gap. We will apply the first of its kind methodology for conducting dielectric measurements across a wide range of frequencies (including the challenging interval used by these radar systems) and temperatures representative of the different ice-forming environments, produce groundbreaking studies on the structural and chemical behavior of different ice types using CT microtomography and molecular dynamic modelling, and will create a wide-ranging dataset of the dielectric properties of non-terrestrial ices. Such pioneering and high gain research will allow to obtain the maximum benefit from missions such as JUICE and Europa CLIPPER. By the end of the project significant and fundamental progress will be made to properly perform dielectric measurements on icy planetary analogues, in the comprehension of the physics behind the dielectric behavior of water ice and icy materials, and in radar data modelling and interpretation. Moreover, the project’s results will serve as a critical knowledge base for present and future radar sounder planetary missions.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-ADG

See all projects funded under this call

Host institution

UNIVERSITA DEGLI STUDI ROMA TRE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 3 176 790,00
Address
VIA OSTIENSE 133
00154 ROMA
Italy

See on map

Region
Centro (IT) Lazio Roma
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 3 176 790,00

Beneficiaries (1)

My booklet 0 0