Objective
Discrepancies between theory and experiments have been fueling the development of physics. Today, Quantum Electrodynamics (QED) is the most accurate theory and served as a blueprint for all subsequent field theories. Physics beyond the Standard Model must exist as we know from observations of the cosmos. It is likely to be found where no one has looked before, i.e. at very large energies, high sensitivity, or high precision. To progress with the so-called precision frontier, high resolution spectroscopy of atomic hydrogen and hydrogen-like systems continues to play a decisive role because their simplicity. Testing QED means to verify the consistency of parameters that enter this theory as they are obtained from as many different measurements as possible. Spectroscopic data also provides the input for the determination of the best values for the fundamental constants. The largest leverage for the determination of the Rydberg constant is currently due to the 1S-3S transition frequency that we want to improve in the framework of this proposal. A second apparatus provides a cold metastable 2S beam of atomic hydrogen and deuterium. This will be used in a series of measurements between the 2S and nP states as well as two-photon transitions between 2S and nS/nD states (with n=3…10). The same apparatus can be used to remeasure the 1S-2S transition frequency as an improved result from anti-hydrogen is expected. The work with the spectrometers builds on proven technologies. To go further we are proposing a method to trap atomic hydrogen in an optical dipole trap that operates at the magic wavelength. The proposed scheme avoids a cooling laser and will not be more complex than existing optical lattice clocks. It could eliminate all leading systematics for the above-mentioned transitions. Moreover, it could be employed as a computable clock to redefine the SI by fixing the value of the Rydberg constant. The new SI system would then be based exclusively on defined constants.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences theoretical physics particle physics
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2023-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.