Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Remote controlling biological systems by sonopharmacology and sonogenetics

Project description

Ultrasound controls polynucleic acid carriers that bind bioactive payloads

Light has been increasingly used in biomedicine to induce drug activity or control protein function but its low penetration depth in tissues poses a barrier to further progress. Ultrasound penetrates deeply and can be applied with sub-millimetre resolution in a clinical setting without harming cells and tissues. The ERC-funded SONOPHARMAGEN project aims to use ultrasound to control the activity of drugs, proteins and genes via polynucleic acid carriers that bind bioactive payloads. The project will design these carriers to be sensitive to ultrasound, releasing their bioactive payloads to activate drugs and control cellular functions. SONOPHARMAGEN plans to demonstrate their use in cancer immunotherapy, diabetes research and tissue engineering.

Objective

To date, light has been employed as a widespread trigger to achieve control over the activity of drugs and protein function establishing the fields of photopharmacology and optogenetics, respectively. Both techniques led to promising new therapies, the elucidation of brain function or understanding of neural disorders. However, serious limitations resulting from the low penetration depth of light into tissues are severely hampering progress in these fields. In contrast to photons, ultrasound deeply penetrates tissue and can be applied with sub-millimeter resolution and consequently has been widely established in the clinic over many decades for therapy and diagnostics.
In this ERC Advanced Grant, I will develop a radically new approach to control the activity of drugs, proteins and genes by biocompatible ultrasound. Polynucleic acid carriers, which can bind a wide variety of bioactive payloads, will be designed to be sensitive to different ultrasound sources, which can be applied in clinical settings and do not harm cells or tissues. Upon ultrasound irradiation, these carriers liberate their bioactive payloads by mechanochemical principles to switch on drugs and control cellular functions.
To achieve this aim, I will: investigate the effect of ultrasound (US) on nucleic acid architectures; study the loading of polynucleic acids with different payloads and their release by US; develop a technology platform to activate small molecule drugs, proteins and oligonucleotides; and showcase the huge potential of these technologies for cancer immunotherapy, diabetes research and tissue engineering.
This project will boost sonopharmacology and sonogenetics. Its outcomes will enable spatiotemporal control of drug action to minimize side effects in pharmacotherapy like cancer. The remote controlled orchestration of protein and gene function by US will strongly advance medicine and the life sciences by answering fundamental questions in these fields.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2023-ADG

See all projects funded under this call

Host institution

DWI LEIBNIZ-INSTITUT FUR INTERAKTIVE MATERIALIEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 500 000,00
Address
FORCKENBECKSTRASSE 50
52074 Aachen
Germany

See on map

Region
Nordrhein-Westfalen Köln Städteregion Aachen
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 500 000,00

Beneficiaries (1)

My booklet 0 0