Project description
Magnons’ interaction with environment to enhance their transport
Magnonics endeavours to develop nanoscale devices that use magnons as carriers of information. In contrast to electron-based technologies, magnons offer greater energy efficiency as they do not rely on electric currents. However, a significant challenge persists in effectively transporting magnon signals over long distances. The MSCA-funded OpenMag project seeks to investigate the interaction of magnons with their environment, rendering magnon transport non-Hermitian and thus improving its efficiency. This project aims to lay the groundwork for non-Hermitian spintronics, which explores the spin degree of freedom in non-Hermitian systems. It will pursue two primary strategies: the interaction of magnons with photons within a cavity, and the development of non-Hermitian magnon topological phases through magnon-electron interactions. Initially focusing on ferromagnets, OpenMag plans to expand its scope to include antiferromagnets and alternative magnets.
Objective
There is a great need for new energy-efficient technologies to meet the ever-increasing energy demands of the 21st century. The field of magnonics aims to address this need by developing nanoscale magnonic devices that use magnons - the excitations of magnetic materials - as information carriers. Because magnons do not require electric currents, they are much more energy efficient than electron-based technologies.
However, the transport of magnon signals over long distances remains a key challenge, limiting the development of a mature magnonics platform. The central objective of the OpenMag project is to meet this challenge by harnessing the coupling of magnons to their environment. This renders the magnon transport non-Hermitian, opening up pathways to engineer the enhancement of magnon transport. OpenMag will thus open up the field of non-Hermitian spintronics: the study of the spin degree of freedom in non-Hermitian systems. This will be accomplished through two strategies: (1) the interaction of magnons with photons in a cavity and (2) the development of non-Hermitian magnon topological phases through magnon-electron interactions. These strategies will initially be developed in ferromagnets, which allows OpenMag to make use of their well-understood magnetization dynamics. Using insights from ferromagnetic materials, OpenMag will develop non-Hermitian spintronics in antiferromagnets and altermagnets, which will enable access to fast dynamics and downsizing to the nanoscale: two crucial milestones in magnonics.
The OpenMag project will be carried out at the Johannes Gutenberg University (JGU) Mainz, under supervision of Prof. Sinova, who leads a world-renowned theory group in spintronics and nanoelectronics. Over the past decades his group has developed the theoretical foundations of antiferromagnets and altermagnets, and is thus the perfect host for building the field of non-Hermitian spintronics in antiferromagnets and altermagnets.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencesphysical scienceselectromagnetism and electronicsspintronics
- engineering and technologynanotechnologynanoelectronics
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
You need to log in or register to use this function
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
55122 Mainz
Germany