Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

QUANTum mixtures In FLat And Curved geometries

Project description

Exploring exotic phenomena in mixtures of ultracold quantum gases

Ultracold quantum gases are a groundbreaking tool in physics, helping researchers explore fundamental models like nonrelativistic bosons and fermions. Recent advances in this field include intriguing phenomena like quantum droplets and supersolidity in gases with long-range interactions. With the support of the Marie Sklodowska-Curie Actions, the QUANTIFLAC project plans to study mixtures of these ultracold gases to uncover new and exciting quantum behaviours. The goal is to analyse simple microscopic models that reveal exotic many-body effects, such as unusual structures in bosonic mixtures and self-binding in fermionic ones. Researchers will also examine how different shapes and external conditions affect these gases.

Objective

Ultracold quantum gases allowed to realize experimentally several paradigmatic models of theoretical physics, such as nonrelativistic bosons and fermions with zero-range interactions. One of the issues driving the last decades of research on quantum gases was understanding how, from these fundamental models, macroscopic structures and quantum phenomena emerge. Along this direction, the most recent advances of the field include the discovery of dilute quantum droplets and supersolidity in gases with long-range interactions. A great deal of experimental and theoretical attention is now directed at identifying novel phases of multi-component Bose or Fermi mixtures with different compositions, different types of interactions, and in various geometries.

The QUANTIFLAC project will analyze low-dimensional Bose-Bose and Fermi-Fermi mixtures of ultracold quantum gases, with the goal of engineering minimally-complicated microscopic models displaying exotic many-body effects. We plan to study emergent inhomogeneous structures in bosonic mixtures and self-binding in fermionic mixtures, aiming to determine whether this type of phenomena can be driven exclusively by structureless zero-range interactions. We will also investigate Bose-Bose mixtures confined in various curved geometries, to understand how the interplay of curvature, boundary conditions and topology regulates the macroscopic quantum behavior of the system.

This theoretical project has tight connections with various established experimental groups: its results will raise immediate interest and have far-reaching implications for the quantum simulation of matter with ultracold atomic mixtures and for the fundamental understanding of macroscopic quantum aggregates.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

UNIVERSITAT POLITECNICA DE CATALUNYA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 181 152,96
Address
CALLE JORDI GIRONA 31
08034 Barcelona
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0