Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Advanced Fast-Ion Loss Measurements at the JT-60SA and ITER tokamaks

Project description

Overcoming barriers to fusion energy commercialisation

Commercialising fusion energy hinges on effectively confining alpha particles and fast ions within burning plasmas. Funded by the Marie Skłodowska-Curie Actions programme, the AFILM project aims to address this by studying fast-ion losses in advanced tokamak experiments like ITER (France) and JT-60SA (Japan). Project activities include installing and testing fast-ion loss detectors (FILDs) at JT-60SA, which includes creating the scintillator plate, testing its reciprocating system and conducting optical calibrations. The research team will also assess fast-ion losses from the 500-keV N-NBI at JT-60SA using simulations and advanced modelling approaches. Furthermore, AFILM plans to design robust FILD solutions for the harsh conditions at ITER.

Objective

One of the main challenges towards the commercialization of fusion energy is the appropriate confinement of alpha particles in burning plasmas as well as fast ions generated by auxiliary heating systems.
This project contributes to that objective by aiming at the temporal and velocity-space characterization of fast-ion losses in the most advanced tokamak experiments (ITER and JT-60SA).
i) Commissioning of a Fast-Ion Loss Detector (FILD) and its installation at the JT-60SA tokamak, including the synthesis of its scintillator plate, testing of its reciprocating system, optical calibration and assessment of its structural integrity.
ii) Assessing the escaping fast ions generated by the 500keV N-NBI at JT-60SA. These unprecedented time-resolved velocity-space measurements under different regimes of operation will be validated using Hamiltonian full-orbit simulations. Moreover, advanced, first-principle hybrid kinetic-MHD modeling with the MEGA code will be used to reproduce the losses induced by Alfvenic instabilities.
iii) Designing the ITER FILD and developing the technical solutions required to survive the harsh conditions at the ITER first wall. This includes thermo-mechanical assessment of the probe head, a synthetic diagnostic to estimate the signals, and the development of a scintillator plate with tolerable noise and degradation induced by neutrons and gamma radiation.
This action is carried out at the Plasma Science and Fusion Technology group of the University of Seville in close collaboration with the ITER Organization, EUROfusion Consortium and JT-60SA teams. It includes two two-month secondments at QST (Japan) to install and exploit the JT-60SA FILD. Trough the execution of this project, the candidate will be trained to lead a research group of engineers and physicists implementing instrumentation relevant for the commercialization of fusion energy.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

UNIVERSIDAD DE SEVILLA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 181 152,96
Address
CALLE S. FERNANDO 4
41004 Sevilla
Spain

See on map

Region
Sur Andalucía Sevilla
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Partners (1)

My booklet 0 0