Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Poly(ionic liquid)s assist diatomic catalysts in achieving highly efficient CO2 conversion in Li-CO2 batteries

Project description

CO2 management with advanced battery design

Rising CO2 levels are a major environmental issue, and current reduction methods are not keeping up. Li-CO2 batteries could help by capturing CO2 and storing energy, but their performance is limited by slow conversion processes. With the support of the Marie Skłodowska-Curie Actions programme, the PASSION project aims to develop a new type of battery cathode. Specifically, it will use a combination of special materials to boost CO2 conversion in these batteries: poly(ionic liquid)s will capture CO2 before reduction, while atomic catalysts with different metal centres will speed up the reaction. This new design will target an energy density of 500 Wh/kg, improving both CO2 capture and battery efficiency.

Objective

The rising CO2 emission has underscored the need for innovative approaches toward CO2 management. Li-CO2 batteries provide a promising strategy for direct CO2 fixation in energy storage devices with a high theoretical specific energy of 1876 Wh/kg, highlighting in effective CO2 management. A key challenge in Li-CO2 batteries is that the sluggish CO2 conversion including CO2 reduction reaction (CRR) and evolution reaction (CER) in cathode seriously deteriorates battery performance. In this project, we propose an integrated cathode design with combined pre-activator molecules and bidirectional atomic catalytic materials in cathode for improving CO2 conversion efficiency.
Poly(ionic liquid)s (PILs) with high CO2 affinity, good compatibility to lithium salt and wide electrochemical window, are designed with amine groups as pre-activators in cathode for achieving CO2 activation before electroreduction on catalysts. The diatomic catalysts (DACs) with highly active dual metal centres and theoretical 100% atom utilization, are screened out as bidirectional catalysts for improving CRR/CER simultaneously. Such PILs-modified DACs will be 3D printed into self-supporting integrated cathode with designed open channels and interconnected conductive skeleton, to grant enough solid products support and effective transportation of CO2, Li ion and electron in cathode. Consequently, Li-CO2 batteries with long cycle life (over 1000 cycles) and high energy density (500 Wh/kg or above) will be targeted. In combination with in situ electrochemical characterizations and DFT calculations, mechanism of CO2 conversion in designed cathode will be clarified in this project.
Results from this project will inspire cathode design of Li-CO2 batteries on pre-activator and catalytic conversion beyond direct electroreduction on catalysts. It will broaden the perspective on atomically dispersed catalysts and promote the development of energy storage devices accompanied by CO2 utilization.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2023-PF-01

See all projects funded under this call

Coordinator

STOCKHOLMS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 222 727,68
Address
UNIVERSITETSVAGEN 10
10691 Stockholm
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0