Project description
A novel design platform for advanced 2D optical metasurfaces
Wireless communication is under increasing pressure for ever faster speeds while accommodating continuously increasing data traffic. Optical metasurfaces enable the greater bandwidth needed to address these challenges yet they are currently difficult to design, particularly when more advanced functionalities are targeted such as non-linear responses and all-optical control. With the support of the Marie Skłodowska-Curie Actions programme, the QUARTE project aims to deliver a coherent modal computational framework for the analysis and design of linear and non-linear metasurfaces realised with 2D materials that exhibit these targeted functionalities. The modal technique will reveal the physics governing the light-matter interactions, enhancing understanding and supporting design optimisation.
Objective
The regular rising demand for faster wireless communication (i.e. larger spectral bandwidths) was anomalously boosted recently due to the change on working habits of the Europeans who nowadays more and more work from home or become digital nomads. Optical metasurfaces offer this required high bandwidth combining it with easy fabrication, flexibility, and advanced functionality, rendering them a potential candidate to encounter this demand in wireless optical communications. Despite their large application span (wavefront manipulation, beam steering, perfect absorption), the design of optical metasurfaces is sometimes counter-intuitive and computationally cumbersome, especially when more advanced functionalities are targeted (nonlinear/all-optical control), typically realized by resorting to contemporary material options such as the 2D materials platform. QUARTE aims to present a coherent modal computational framework for the analysis and design of linear and, importantly, nonlinear metasurfaces realized with 2D materials, demonstrating advanced functionalities and all-optical control. The proposed modal framework, based on the concept of quasinormal modes (i.e. the natural modes of leaky and lossy cavities), will be capable of efficiently handling periodic systems (metasurfaces, gratings) consisting of 2D materials and possessing linear and, importantly, nonlinear responses and functionalities. Furthermore, as a modal technique, the proposed approach is capable of revealing the true physics that govern light-matter interaction, especially in the more obscure nonlinear regime, allowing for fast, efficient, and optimal designs with physical intuition and understanding of the involved physics and interactions. The realization of QUARTE research targets will be performed by the Researcher in the Laboratoire Photonique, Numérique et Nanosciences (LP2N), a Joint Research Unit of Centre National de la Researche Scientifique (CNRS).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Funding Scheme
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsCoordinator
75794 Paris
France