Project description
Heavy particles could defy standard model expectations
After more than a decade of research, the Large Hadron Collider has not found direct evidence of new particles. This suggests that if new physics exists, it might involve heavy particles that need more energy for their detection. The standard model effective field theory (SMEFT) offers a way to probe new physics by revealing that heavy particles might slightly deviate from expected standard model predictions in particle interactions. Funded by the Marie Skłodowska-Curie Actions programme, the EFT4ward project aims to advance understanding of particle physics beyond current models. The research team seeks to advance SMEFT by integrating low-energy observations in global fit methodologies, using machine learning to develop optimal observables to maximise sensitivity to new physics and creating open-source software to identify potential heavy particles from SMEFT results.
Objective
After more than a decade of data-taking, no direct evidence of new particles has been found at the LHC, suggesting that new physics (NP) might be heavier than the energies currently probed. Heavy particles can alter interactions among known particles, causing subtle deviations from the Standard Model (SM) predictions. The Standard Model Effective Field Theory (SMEFT) is a robust framework that allows for a model-independent parametrisation of new interactions, providing us with the tools needed for a successful indirect discovery program. In particular, the peculiar structure of the theory dictates correlations between different observables, motivating global analyses. In this proposal, I develop a strategy to advance global SMEFT interpretations in three key directions. Firstly, I will expand the comprehensiveness of the dataset by including low-energy observables in current global fit methodologies. To accomplish this, renormalization group equations mixing effects must be included in theoretical predictions, as they prescribe how different energy regimes are connected. Secondly, the research project aims to advance the design of optimal observables for global fits by using machine learning techniques, with the goal of maximising sensitivity to NP. Lastly, the ultimate objective of indirect searches is the identification of heavy new particles responsible for the modified interactions; the SMEFT is simply an intermediate step in this endeavour. I will provide the particle physics community with an open-source software that will interface with the output of global SMEFT fits and indicate which heavy particles are disfavoured by the data and which are still viable.
The combination of my expertise in SMEFT analyses and collider phenomenology, along with the host institute's proficiency in advanced statistical methods, flavour physics, and UV matching, provides an ideal setting to successfully execute the proposed tasks and significantly advance indirect searches.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- natural sciences physical sciences theoretical physics particle physics particle accelerator
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
46010 Valencia
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.