Skip to main content
An official website of the European UnionAn official EU website
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Topology Optimization of Porous Electrodes using Scalable Modeling Approaches

Project description

New framework for metal-air RFBs with optimised porous electrodes

Integrating redox flow batteries (RFBs) with metal-air batteries creates hybrid metal-air RFBs, which have the potential for low-cost energy storage if efficiency issues are resolved. Porous electrodes in these systems significantly impact performance by influencing thermodynamics, kinetics, and transport. With the support of the Marie Skłodowska-Curie Actions programme, the TOPESMASH project will develop a computational framework for metal-air RFBs to optimise the architecture of the porous electrodes. This involves implementing a multi-scale computational model to accelerate power and electrochemical efficiency optimisation. The project will focus on upscaling and manufacturability of the optimised designs, employing high-performance physics-based computational models and inverse design methodologies for topology optimisation of 3D porous electrodes.

Objective

Redox flow batteries (RFBs) are a class of rechargeable electrochemical systems that are particularly promising for grid-level electricity storage. Integrating the advantages of RFBs with metal-air batteries results in hybrid metal-air RFBs, having great potential to unlock ultra-low-cost energy storage if certain efficiency issues are resolved. In these systems, porous electrodes are performance-defining components affecting the thermodynamics, kinetics, and transport phenomena. This project proposes to develop a computational framework of metal-air RFBs to optimize the architecture (topology, morphology, and microstructure) of the porous electrodes. This proposal is the first to implement a multi-scale computational model of metal-air RFBs for accelerating the optimization of the power and electrochemical efficiency of these systems by considering the up-scaling and manufacturability of the optimized designs. This will be achieved by developing high-performance physics-based computational models of metal-air RFB processes in different length scales and employing them in inverse design methodologies for topology optimization of 3D porous electrodes. The up-scaling and prototyping strategies will be based on triply periodic minimal surface (TPMS) metamaterial design principles that can for the first time produce high-resolution multi-scale and anisotropic designs of the porous electrodes. Prototypes will be produced using stereolithography 3D printing followed by carbonization to assess the performance of the inversely designed electrodes across different operating conditions. Verification, validation, and uncertainty quantification (VVUQ) approaches will be used to examine the validity of the multi-scale models. Moreover, the project considers moving towards the exascale computing paradigm by leveraging proper high-performance computing (HPC) techniques, enabling the models to simulate large-scale RFB systems more accurately in high resolution.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

TECHNISCHE UNIVERSITEIT EINDHOVEN
Net EU contribution
€ 203 464,32
Address
GROENE LOPER 3
5612 AE Eindhoven
Netherlands

See on map

Region
Zuid-Nederland Noord-Brabant Zuidoost-Noord-Brabant
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data

Partners (1)