Project description
Quantum simulation for lattice gauge theories using Rydberg atom arrays
Lattice gauge theories (LGT) – field theories invariant under local transformations – describe many strongly correlated phenomena in condensed matter and high-energy physics. Classical computers are ill-equipped to solve the highly complex LGT and current quantum computing hardware lacks error correction, offsetting its efficiency advantage. Rydberg atoms in tweezer arrays, a powerful new quantum simulation platform, enable co-design quantum hardware and software tailored to simulate LGT. With the support of the Marie Skłodowska-Curie Actions programme, the PROGRAM project aims to develop quantum simulation protocols for LGT using Rydberg atom arrays, focusing on three main challenges: simulating 2D non-equilibrium LGT dynamics, implementing non-abelian gauge symmetries and implementing fermionic matter fields.
Objective
Many strongly-correlated phenomena in condensed-matter and high-energy physics, from high-Tc superconductivity to quark confinement, can be described by lattice gauge theories (LGT), field theories invariant under local transformations. The immense computational complexity associated with solving LGT using classical computers hinders progress in these fields, where many questions remain open. Although quantum computers can address these questions more efficiently than classical devices, current quantum hardware is limited in the absence of error correction, complicating the reach of a practical quantum advantage in the near term.
Co-designing both quantum hardware and software tailored to simulate LGT, addressing non-trivial regimes while minimizing experimental resources, is therefore a challenging but timely task. Rydberg atoms in tweezer arrays, which have recently emerged as a powerful quantum simulation platform, offer unique capabilities that can be harnessed in this direction. On the one hand, the strong Rydberg interaction and the associated blockade mechanism naturally leads to emergent local symmetries. On the other hand, the possibility of controlling many internal atomic states as well as using fermionic atoms allows to locally encode and simulate non-abelian gauge fields and fermionic matter fields, respectively, minimizing resource overheads.
PROGRAM will investigate this hardware-efficient approach and develop quantum simulation protocols for LGT using Rydberg atom arrays, focusing on three main challenges: (i) simulating non-equilibrium LGT dynamics in 2D, and (ii) implementing non-abelian gauge symmetries, as well as (iii) fermionic matter fields, in a scalable manner. The Researcher will design these protocols using both analog, digital and variational near-term resources, benchmark them in the presence of experimental errors, and run some of them using existing quantum hardware.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.