Project description
More stable and protected quantum bits thanks to advanced Josephson junctions
Creating a stable quantum register shielded from perturbations remains critical in quantum technology. Hybrid semiconductor-superconductor devices have been studied to achieve this, focusing on Majorana bound states for topological quantum computing. Although not yet successful, these efforts have advanced the development of new materials for spin qubits in 1D structures. Recent experiments with Andreev spin qubits (ASQs) in III-V semiconductor nanowires have shown potential but face limitations owing to the semiconductor’s intrinsic properties and geometry. Funded by the Marie Skłodowska-Curie Actions programme, the RAMPAGE project seeks to overcome these challenges by fabricating new 1D Josephson junctions using 2D germanium heterostructures. These new platforms will enable the study of spin-orbit interactions and the development of the first ASQ on a group IV semiconductor.
Objective
In the boiling field of quantum technology, the development of a stable, inherently shielded from perturbations quantum register is essential, yet remains elusive. Hybrid semiconductor-superconductor devices have been intensively studied, hunting for Majorana bound states towards topological quantum computing. While this goal has not yet been achieved, it has spurred material developments in III-V semiconductors, creating a new playground for spin qubits, resulting from the hybridization of the semiconductor and the superconductor in 1D Josephson junctions. Pioneering experiments recently demonstrated the manipulation of such a hybrid qubit, the Andreev spin qubit (ASQ), highlighting the potential of this approach. However, it is now reaching its limits due to the intrinsic properties of the host III-V semiconductor and the nanowire geometry, calling for a more suitable platform not demonstrated to date. In this proposal, I will tackle this challenge by fabricating a hybrid electrostatically tunable 1D Josephson junctions from a 2D germanium heterostructure. The first realization of a 1D Josephson weak ling on a planar Ge heterostructure will experimentally prove the possible integration of hybrid junctions, with resolved Andreev bound states. This device will enable the study of the spin-orbit interaction Hamiltonian for holes in 1D, a topic that remains largely unexplored leveraging microwave spectroscopy of Andreev bound states. Then, harnessing the unique properties of Ge, I will realize the first ASQ on a group IV semiconductor heterostructure. The proposed hybrid superconducting ASQ sets a significant milestone in the field, paving the way towards larger ensembles and enabling straightforward microwave connectivity using standard circuit quantum electrodynamic techniques. This harmoniously blends the benefits of semiconductor spin qubits with superconducting circuits, offering a promising path toward topologically protected qubits.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences chemical sciences inorganic chemistry metalloids
- natural sciences physical sciences electromagnetism and electronics superconductivity
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2023-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3400 KLOSTERNEUBURG
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.